Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (4) : 774-783    https://doi.org/10.1007/s11707-016-0611-2
RESEARCH ARTICLE
A mutual information-Dempster-Shafer based decision ensemble system for land cover classification of hyperspectral data
Parham PAHLAVANI, Behnaz BIGDELI()
Center of Excellence in Geomatics Engineering in Disaster Management, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
 Download: PDF(4124 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hyperspectral images contain extremely rich spectral information that offer great potential to discriminate between various land cover classes. However, these images are usually composed of tens or hundreds of spectrally close bands, which result in high redundancy and great amount of computation time in hyperspectral classification. Furthermore, in the presence of mixed coverage pixels, crisp classifiers produced errors, omission and commission. This paper presents a mutual information-Dempster-Shafer system through an ensemble classification approach for classification of hyperspectral data. First, mutual information is applied to split data into a few independent partitions to overcome high dimensionality. Then, a fuzzy maximum likelihood classifies each band subset. Finally, Dempster-Shafer is applied to fuse the results of the fuzzy classifiers. In order to assess the proposed method, a crisp ensemble system based on a support vector machine as the crisp classifier and weighted majority voting as the crisp fusion method are applied on hyperspectral data. Furthermore, a dimension reduction system is utilized to assess the effectiveness of mutual information band splitting of the proposed method. The proposed methodology provides interesting conclusions on the effectiveness and potentiality of mutual information-Dempster-Shafer based classification of hyperspectral data.

Keywords mutual information      Dempster-Shafer      hyperspectral      classification      support vector machine     
Corresponding Author(s): Behnaz BIGDELI   
Just Accepted Date: 23 November 2016   Online First Date: 15 December 2016    Issue Date: 10 November 2017
 Cite this article:   
Parham PAHLAVANI,Behnaz BIGDELI. A mutual information-Dempster-Shafer based decision ensemble system for land cover classification of hyperspectral data[J]. Front. Earth Sci., 2017, 11(4): 774-783.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0611-2
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I4/774
Fig.1  Flowchart of the mutual Information-Dempster-Shafer based decision ensemble system for classification of HSI.
Fig.2  Decision profile in fuzzy decision ensemble systems.
Fig.3  AVIRIS Indian Pine data. (a) original data and (b) ground truth.
Fig.4  ROSIS Pavia University data, (a) original data and (b) ground truth.
Class Land cover class Samples
1 Corn-no till 1434
2 Corn-minimum till 834
3 Grass/pasture 497
4 Grass/trees 747
5 Hay-windrowed 489
6 Soybeans-no till 968
7 Soybeans-minimum till 2468
8 Soybeans-clean till 614
9 Woods 1294
Tab.1  AVIRIS Indiana Pine land covers classes and available reference samples
Class Land cover class Samples
1 Trees 524
2 Ssphalt 548
3 Bitumen 375
4 Gravel 392
5 Painted metal sheets 265
6 Shadows 231
7 Self-blocking bricks 514
8 Meadows 540
9 Bare soil 532
Tab.2  ROSIS Pavia University lands cover classes and available reference samples
Fig.5  Splitting of AVIRIS HSI based on local minima of MI (Bigdeli et al., 2013).
No. No. of bands FML SVM
1 1?18 59.28 57.33
2 19?33 62.12 64.67
3 34?44 68.24 65.33
4 45?57 57.36 53.56
5 58?77 64.45 62
6 78?105 65.68 66
7 106?125 57 54
8 126?131 48.44 48.89
9 132?147 50.18 50.22
10 148?157 55 51.11
11 158?170 53 49.33
12 171?202 58.46 53.11
Tab.3  Band numbers in splitting of spectral information of AVIRIS data and classification results by FML and SVM on bands subsets
Decision ensemble system Dimension reduction
DS WMV PCA PSO
OA 97.42 94.22 90.02 88.96
Kappa 94.82 91.08 86.24 83.85
Tab.4  Overall accuracies and kappa coefficients for proposed DES and dimension reduction methods on AVIRIS data
Fig.6  Classification maps obtained by different classification methods of Table 4 on AVIRIS data. (a) MI-DS, (b) MI-WMV, (c) PCA, and (d) PSO.
Methods MI-DS MI-WMV PCA PSO
Corn-no till 95.84 94.54 86.90 86.21
Corn-minimum till 92.42 90.48 84.26 84.2
Grass/pasture 96.84 94.24 94.79 90.26
Grass/trees 98.4 95.8 97.70 93.1
Hay-windrowed 98.32 93.8 99.51 92.8
Soybeans-no till 93.89 94.22 84.78 85.3
Soybeans-minimum till 99.6 98.6 91.08 90.51
Soybeans-clean till 98.84 95.3 90.42 88.6
Woods 95.42 94.62 96.79 93.1
Tab.5  Class by class accuracies for MI-based decision ensemble systems and dimension reduction techniques on AVIRIS data
Fig.7  Splitting of Pavia ROSIS HSI based on local minima of MI (Bigdeli et al., 2013).
No No of bands FML SVM
1 1?22 65.96 62.4
2 23?33 62.6 58.56
3 34?46 68.28 64.11
4 47?57 58.28 54.86
5 58?73 70.45 68
6 74?84 68.6 66.7
7 85?95 64.3 60.4
8 96?103 58.9 58.1
Tab.6  Band numbers in splitting of spectral information of ROSIS data and classification results by FML and SVM on bands subsets
Accuracy Decision ensemble system Dimension reduction
DS WMV PCA PSO
OA 98.52 96.1 87.24 84.48
Kappa 94.2 92.07 84.2 81.8
Tab.7  Overall accuracies and kappa coefficients for proposed DES and dimension reduction methods on Pavia ROSIS data set
Fig.8  Classification maps obtained by different classification methods of Table 4 on ROSIS data. (a) MI-DS, (b) MI-WMV, (c) PCA, and (d) PSO.
Methods MI-DS MI-WMV PCA PSO
Trees 98.20 97.8 92.4 91.83
Asphalt 98.82 96.92 85.76 82.55
Bitumen 89.47 89.2 91.42 77.37
Gravel 99.93 98.76 89.78 87.18
Painted metal sheets 99.85 96.98 93.58 90.53
Shadows 97.69 97.02 98.68 89.52
Self-blocking bricks 98.40 92.12 90.9 90.45
Meadows 94.69 93.84 92.84 92.32
Bare soil 98.43 97.68 79.6 72.44
Tab.8  Class by class accuracies for MI-based decision ensemble systems and dimension reduction techniques on ROSIS data
1 Akbari D, Homayuoni  S, Saffari A, Mehrshad N (2016). Mapping urban land cover based on spatial-spectral classification of hyperspectral remote- sensing data. Int J Remote Sens, 37(2): 440–454
https://doi.org/10.1080/01431161.2015.1129561
2 Benediktsson J A ,  Chanussot J ,  Fauvel M  (2007). Multiple classifier systems in remote sensing: from basics to recent developments. In: Haindl M, Kittler J, Roli F, eds. Multiple Classifier Systems. Heidelberg: Springer, 501–512
3 Bigdeli B, Samadzadegan  F, Reinartz P  (2013). A multiple SVM system for classification of hyperspectral remote sensing data. Journal of the Indian Society of Remote Sensing, 41(4): 763–776
https://doi.org/10.1007/s12524-013-0286-z
4 Borasca B, Bruzzone  L, Carlin L ,  Zusi M (2006). A fuzzy-input fuzzy-output SVM technique for classification of hyperspectral remote sensing images. Signal Processing Symposium, 2006. NORSIG 2006. Proceedings of the 7th Nordic, 2–5
5 Breve F, Ponti  M, Mascarenhas N  (2007). Multilayer Perceptron Classifier Combination for Identification of Materials on Noisy Soil Science Multispectral Images. Computer Graphics and Image Processing, 2007. SIBGRAPI 2007. XX Brazilian Symposium on. 239–244
6 Camps-Valls G, Bruzzone  L (2005). Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Rem Sens, 43(6): 1351–1362
https://doi.org/10.1109/TGRS.2005.846154
7 Ceamanos X, Waske  B, Benediktsson J ,  Chanussot J ,  Fauvel M ,  Sveinsson J  (2010). A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data. International Journal of Image and Data Fusion, 1(4): 293–307
https://doi.org/10.1080/19479832.2010.485935
8 Chen C F (1999). Fuzzy training data for fuzzy supervised classification of remotely sensed images. Asian Conference Remote Sensing (ACRS 1999)
9 Chen H, Varshney  P K, Arora  M K (2003). Performance of mutual information similarity measure for registration of multitemporal remote sensing images. IEEE Trans Geosci Rem Sens, 41(11): 2445–2454
https://doi.org/10.1109/TGRS.2003.817664
10 Del Frate F, Pacifici  F, Schiavon G ,  Solimini C  (2007). Use of neural networks for automatic classification from high-resolution images. IEEE Trans Geosci Rem Sens, 45(4): 800–809
https://doi.org/10.1109/TGRS.2007.892009
11 Di W, Pan  Q, He L ,  Cheng Y  (2008). Anomaly detection in hyperspectral imagery by fuzzy integral fusion of band-subsets. Photogramm Eng Remote Sensing, 74(2): 201–213
https://doi.org/10.14358/PERS.74.2.201
12 Goel P K, Prasher  S O, Patel  R M, Landry  J A, Bonnell  R B, Viau  A A (2003). Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Comput Electron Agric, 39(2): 67–93
https://doi.org/10.1016/S0168-1699(03)00020-6
13 Ham J, Yangchi  Chen, Crawford M M ,  Ghosh J (2005). Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Rem Sens, 43(3): 492–501
https://doi.org/10.1109/TGRS.2004.842481
14 Imani M, Ghasemian  H (2015). Feature reduction of hyperspectral images: discriminant analysis and the first principal component. Journal of AI and Data Mining, 3(1): 1–9 
https://doi.org/10.5829/idosi.JAIDM.2015.03.01.01
15 Jia X (2002). Simplified maximum likelihood classification for HS data in cluster space. In: IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS ‘02), Toronto, Ontario, Canada, 5: 2578–2580
16 Kasiri bidhendi S ,  Shirazi A ,  Fotoohi N ,  Ebadzadeh M  (2007). Material Classification of hyperspectral images using unsupervised fuzzy clustering methods. Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, SITIS '07. 619 –623
17 Kuncheva L (2004). Combining Pattern Classifiers methods and algorithms. Hoboken, New jersey. Canada: John Wiley&sons, INC.
18 Li J, Huang  X, Gamba P ,  Bioucas-Dias J M B ,  Zhang L ,  Benediktsson J A ,  Plaza A  (2015). Multiple feature learning for hyperspectral image classification. IEEE Trans Geosci Rem Sens, 53(3): 1592–1606
https://doi.org/10.1109/TGRS.2014.2345739
19 Li S, Wu  H, Wan D ,  Zhu J (2011). An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowl Base Syst, 24(1): 40–48
https://doi.org/10.1016/j.knosys.2010.07.003
20 Martínez-Usó A ,  Pla F, Sotoca  J M, Garcia-Sevilla  P (2006). Clustering based multispectral band selection using mutual information, Proceedings of the 18th International Conference on Pattern Recognition (ICPR), 2: 760–763
21 Müller K L ,  Mika S, Rätsch  G, Tsuda K ,  Schölkopf B  (2001). An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw, 12(2): 181–201
https://doi.org/10.1109/72.914517
22  Pepe M, Boschetti  L, Brivio P A ,  Rampini A  (2010). Comparing the performance of fuzzy and crisp classifiers on remotely sensed images: a case of snow classification. Int J Remote Sens, 31(23): 6189–6203
https://doi.org/10.1080/01431160903401395
23 Shafer G (1976). A Mathematical Theory of Evidence. Princeton University Press
24 Shen J, Wang  C, Wang R ,  Huang F ,  Fan C, Xu  L (2015). A band selection method for hyperspectral image classification based on improved particle swarm optimization, International Journal of Signal Processing. Image Processing and Pattern Recognition, 8(4): 325–338
https://doi.org/10.14257/ijsip.2015.8.4.28
25 Su H, Yang  H, Du Q ,  Sheng Y  (2011). Semi-supervised band clustering for dimensionality reduction of hyperspectral imagery. IEEE Geosci Remote Sens Lett, 8(6): 1135–1139
https://doi.org/10.1109/LGRS.2011.2158185
26 Vaiphasa C (2003). Innovative genetic algorithm for hyperspectral image classification. In: Proc. Int. Conf. Map Asia.
27 Vapnik V N (1998). Statistical Learning Theory.New York: Wiley & Sons, Inc.
28 Yu S, De Backer  S, Scheunders P  (2002). Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery. Pattern Recognit Lett, 23(1‒3): 183–190 
https://doi.org/10.1016/S0167-8655(01)00118-0
29 Zhang C, Qiu  F (2012). Hyperspectral image classification using an unsupervised neuro-fuzzy system. J Appl Remote Sens, 6(1): 1–15
[1] Bartłomiej SZYPUŁA, Małgorzata WIECZOREK. Geomorphometric relief classification with the k-median method in the Silesian Upland, southern Poland[J]. Front. Earth Sci., 2020, 14(1): 152-170.
[2] Hongchun ZHU, Yuexue XU, Yu CHENG, Haiying LIU, Yipeng ZHAO. Landform classification based on optimal texture feature extraction from DEM data in Shandong Hilly Area, China[J]. Front. Earth Sci., 2019, 13(3): 641-655.
[3] Kevin C. Tse, Hon-Chim Chiu, Man-Yin Tsang, Yiliang Li, Edmund Y. Lam. An unsupervised learning approach to study synchroneity of past events in the South China Sea[J]. Front. Earth Sci., 2019, 13(3): 628-640.
[4] Jinwu TANG, Chunyan HU, Xingying YOU, Yunping YANG, Xiaofeng ZHANG, Jinyun DENG, Meng CHEN. The barrier river reach identification and classification in the Middle Yangtze River[J]. Front. Earth Sci., 2019, 13(3): 596-613.
[5] Xue DAI, Rongrong WAN, Guishan YANG, Xiaolong WANG, Ligang XU, Yanyan LI, Bing LI. Impact of seasonal water-level fluctuations on autumn vegetation in Poyang Lake wetland, China[J]. Front. Earth Sci., 2019, 13(2): 398-409.
[6] Xiaochen WANG, Yun SHAO, Fengli ZHANG, Wei TIAN. Comparison of C- and L-band simulated compact polarized SAR in oil spill detection[J]. Front. Earth Sci., 2019, 13(2): 351-360.
[7] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[8] Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015[J]. Front. Earth Sci., 2019, 13(1): 92-110.
[9] Xiaoping LIU, Shuli CHEN, Li ZHUO, Jun LI, Kangning HUANG. Multi-sensor image registration by combining local self-similarity matching and mutual information[J]. Front. Earth Sci., 2018, 12(4): 779-790.
[10] Xiaosong HAN, Jiayi PAN, Adam T. DEVLIN. Remote sensing study of wetlands in the Pearl River Delta during 1995---2015 with the support vector machine method[J]. Front. Earth Sci., 2018, 12(3): 521-531.
[11] Xiaochen WANG, Yun SHAO, Wei TIAN, Kun LI. On the classification of mixed floating pollutants on the Yellow Sea of China by using a quad-polarized SAR image[J]. Front. Earth Sci., 2018, 12(2): 373-380.
[12] Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery[J]. Front. Earth Sci., 2017, 11(4): 765-773.
[13] Yue LIU,Qiuming CHENG,Qinglin XIA,Xinqing WANG. The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China[J]. Front. Earth Sci., 2015, 9(2): 342-354.
[14] Hongjun SU,Yehua SHENG,Peijun DU,Chen CHEN,Kui LIU. Hyperspectral image classification based on volumetric texture and dimensionality reduction[J]. Front. Earth Sci., 2015, 9(2): 225-236.
[15] Jinpeng LI, Shikui DONG, Mingchun PENG, Xiaoyan LI, Shiliang LIU. Vegetation distribution pattern in the dam areas along middle-low reach of Lancang-Mekong River in Yunnan Province, China[J]. Front Earth Sci, 2012, 6(3): 283-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed