Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (2) : 373-380    https://doi.org/10.1007/s11707-017-0664-x
RESEARCH ARTICLE
On the classification of mixed floating pollutants on the Yellow Sea of China by using a quad-polarized SAR image
Xiaochen WANG1,2, Yun SHAO1, Wei TIAN1,3(), Kun LI1
1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Joint Institute for Regional Earth System Science and Engineering and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
 Download: PDF(3947 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study explored different methodologies using a C-band RADARSAT-2 quad-polarized Synthetic Aperture Radar (SAR) image located over China’s Yellow Sea to investigate polarization decomposition parameters for identifying mixed floating pollutants from a complex ocean background. It was found that solitary polarization decomposition did not meet the demand for detecting and classifying multiple floating pollutants, even after applying a polarized SAR image. Furthermore, considering that Yamaguchi decomposition is sensitive to vegetation and the algal variety Enteromorpha prolifera, while H/A/alpha decomposition is sensitive to oil spills, a combination of parameters which was deduced from these two decompositions was proposed for marine environmental monitoring of mixed floating sea surface pollutants. A combination of volume scattering, surface scattering, and scattering entropy was the best indicator for classifying mixed floating pollutants from a complex ocean background. The Kappa coefficients for Enteromorpha prolifera and oil spills were 0.7514 and 0.8470, respectively, evidence that the composite polarized parameters based on quad-polarized SAR imagery proposed in this research is an effective monitoring method for complex marine pollution.

Keywords RADARSAT-2      polarization decomposition      mixed floating pollutants      classification     
Corresponding Author(s): Wei TIAN   
Just Accepted Date: 17 August 2017   Online First Date: 14 September 2017    Issue Date: 09 May 2018
 Cite this article:   
Xiaochen WANG,Yun SHAO,Wei TIAN, et al. On the classification of mixed floating pollutants on the Yellow Sea of China by using a quad-polarized SAR image[J]. Front. Earth Sci., 2018, 12(2): 373-380.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0664-x
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I2/373
LocationTime
(UTC)
Acquisition modeIncidence anglePassBeamResolution
The Yellow Sea
of China
2016-7-4 22:07Fine Quad-pol25.8°–27.6°DescendFQ 75 m
Tab.1  Specifications of the C-band RADARSAT-2 quad-polarized SAR image
Fig.1  C-band RADARSAT-2 quad-polarized SAR image (R: HH G: HV B: VV). The image time (UTC) was 22:07 on 7/4/2016, the swath was 25 km×25 km, the resolution was 5.2 m×7.6 m, and Zones 1 to 4 correspond to vegetation, Enteromorpha prolifera, oil spills, and open water, respectively.
Fig.2  Different scattering components for vegetation, open water, Enteromorpha prolifera, and oil spills following Freeman-Durden decomposition: (a) surface scattering; (b) double bounce scattering; (c) volume scattering.
Fig.3  Different scattering components for vegetation, open water, Enteromorpha prolifera, and oil spills following Yamaguchi decomposition: (a) surface scattering; (b) double bounce scattering; (c) volume scattering; (d) helix scattering.
Fig.4  Different scattering components for vegetation, open water, Enteromorpha prolifera, and oil spills following H/A/alpha decomposition: (a) scattering entropy; (b) scattering angle; (c) scattering anisotropy.
MethodParameterVegetationOpen waterEnteromorpha proliferaOil spillsC
Freeman-Durden decompositionDbl0.00410.000640.000830.000570.7558
Odd0.06620.05720.12140.02870.6175
Vol0.28090.00180.00760.00120.9914
Yamaguchi decompositionDbl0.00650.000810.00160.000660.8156
Odd0.06460.05760.12320.0290.6189
Vol0.18020.000920.00370.000610.9932
Hlx0.04720.000130.000740.000110.9953
H/A/alpha decompositionH0.4780.00520.010.05940.9896
A0.42470.46320.46230.48270.0639
alpha38.147.346711.91813.13880.6769
Tab.2  Polarization parameters for floating pollutants under different polarization decomposition methods
ParemeterVegetationOpen waterEnteromorpha proliferaOil spills
OddModerateModerateHighLow
VolHighLowModerateLow
HHighLowLowHigh
Tab.3  The optimum polarization parameters combination for mixed floating pollutants classification
Fig.5  A pseudo composite image of the optimum polarization parameters.
ParameterVegetationOpen waterEnteromorpha proliferaOil spillsKappa
Odd0.1140.0570.0280.1230.6935
Vol0.2780.00080.01560.00040.6233
H0.5300.0070.0790.1870.6533
Composite0.9555
Tab.4  The typical targets classification accuracy for optimum decomposition parameters
1 Brekke C, Solberg A H S (2005). Oil spill detection by satellite remote sensing. Remote Sens Environ, 95(1): 1–13
https://doi.org/10.1016/j.rse.2004.11.015
2 Cloude S R, Pottier E (1996). A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens, 34(2): 498–518
https://doi.org/10.1109/36.485127
3 Cloude S R, Pottier E (1997). An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens, 35(1): 68–78
https://doi.org/10.1109/36.551935
4 Fletcher R L (1996). The occurrence of “green tides”— A reivew. In: Schramm W, Nienhuis P H, eds. Marine Benthic Vegetation. Springer Berlin Heidelberg, 7–43
5 Freeman A, Durden S L (1998). A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens, 36(3): 963–973
https://doi.org/10.1109/36.673687
6 Hu C M (2009). A novel ocean color index to detect floating algae in the global oceans. Remote Sens Environ, 113(10): 2118–2129
https://doi.org/10.1016/j.rse.2009.05.012
7 Hu C, Li D, Chen C, Ge J, Muller-Karger F E Liu J, Yu F, He M X (2010). On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res, 115(C5): C05017
https://doi.org/10.1029/2009JC005561
8 Kudryavtsev V N, Chapron B, Myasoedov A G, Collard F, Johannessen J A (2013). On dual co-polarized SAR measurements of the ocean surface. IEEE Geosci Remote Sens Lett, 10(4): 761–765
https://doi.org/10.1109/LGRS.2012.2222341
9 Liu D, Keesing J K, He P, Wang Z, Shi Y, Wang Y (2013). The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuarine Coastal & Shelfence, 129: 2–10
10 Liu P, Li X, Qu J J, Wang W, Zhao C, Pichel W (2011). Oil spill detection with fully polarimetric UAVSAR data. Mar Pollut Bull, 62(12): 2611–2618
https://doi.org/10.1016/j.marpolbul.2011.09.036
11 Liu P, Zhao C, Li X, He M, Pichel W (2010). Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm. Int J Remote Sens, 31(17–18): 4819–4833
https://doi.org/10.1080/01431161.2010.485147
12 Liu X, Li Y, Wang Z, Zhang Q, Cai X (2015). Cruise observation of Ulva prolifera bloom in the southern Yellow Sea, China. Estuar Coast Shelf Sci, 163: 17–22
https://doi.org/10.1016/j.ecss.2014.09.014
13 Migliaccio M, Gambardella A, Nunziata F, Shimada M, Isoguchi O (2009a). The PALSAR polarimetric mode for sea oil slick observation. IEEE Transactions on Geoscience & Remote Sensing, 47(12): 4032–4041
14 Migliaccio M, Gambardella A, Tranfaglia M (2007). SAR polarimetry to observe oil spills. IEEE Trans Geosci Remote Sens, 45(2): 506–511
https://doi.org/10.1109/TGRS.2006.888097
15 Migliaccio M, Nunziata F, Gambardella A (2009b). On the co-polarized phase difference for oil spill observation. Int J Remote Sens, 30(6): 1587–1602
https://doi.org/10.1080/01431160802520741
16 Minchew B, Jones C E, Holt B (2012). Polarimetric analysis of backscatter from the deepwater horizon oil spill using L-band synthetic aperture radar. IEEE Trans Geosci Remote Sens, 50(10): 3812–3830
https://doi.org/10.1109/TGRS.2012.2185804
17 Nunziata F, Migliaccio M, Li X (2014). Sea oil slick observation using hybrid-polarity SAR architecture. IEEE Journal of Oceanic Engineering, 1(2): 426–440
18 Sato A, Yamaguchi Y, Singh G, Park S E (2012). Four-component scattering power decomposition with extended volume scattering model. IEEE Geosci Remote Sens Lett, 9(2): 166–170
https://doi.org/10.1109/LGRS.2011.2162935
19 Shi W, Wang M (2009). Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008. J Geophys Res, D, Atmospheres, 114(C12): C12010
https://doi.org/10.1029/2009JC005513
20 Shirvany R, Chabert M, Tourneret J Y (2012). Ship and oil-spill detection using the degree of polarization in linear and hybrid/compact dual-pol SAR. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 5(3): 885–892
21 Shurcliff W (1963). Studies in optics. Journal of Physics and Chemistry of Solids, 24(3): 498–499
https://doi.org/10.1016/0022-3697(63)90212-9
22 Solberg A H S (2012). Remote sensing of ocean oil-spill pollution. Proc IEEE, 100(10): 2931–2945
https://doi.org/10.1109/JPROC.2012.2196250
23 Tian W, Shao Y, Yuan J, Wang S, Liu Y (2010). An Experiment for Oil Spill Recognition Using RADARSAT-2 Image. IEEE International Geoscience & Remote Sensing Symposium, IGRASS 2010, 2761–2764
24 Wang S, Zhang F, Shao Y, Tian W, Gong H (2010). Microwave Remote Sensing for Marine Monitoring: An Example of Enteromorpha prolifera Bloom Monitoring. IEEE International Geoscience & Remote Sensing Symposium, IGRASS 2010, 4530–4533
25 Wang X H, Li L, Bao X, Zhao L D (2009). Economic cost of an algae bloom cleanup in China’s 2008 Olympic sailing venue. Eos (Wash DC), 90(28): 238–239
https://doi.org/10.1029/2009EO280002
26 Yamaguchi Y, Moriyama T, Ishido M, Yamada H (2005). Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans Geosci Remote Sens, 43(8): 1699–1706
https://doi.org/10.1109/TGRS.2005.852084
27 Yamaguchi Y, Sato A, Boerner W M, Sato R, Yamada H (2011). Four-component scattering power decomposition with rotation of coherency matrix. IEEE Transactions on Geoscience & Remote Sensing, 49(6): 2251–2258
28 Yamaguchi Y, Yajima Y, Yamada H (2006). A four-component decomposition of POLSAR images based on the coherency matrix. IEEE Geosci Remote Sens Lett, 3(3): 292–296
https://doi.org/10.1109/LGRS.2006.869986
29 Yoshida G, Uchimura M, Hiraoka M (2015). Persistent occurrence of floating Ulva green tide in Hiroshima Bay, Japan: seasonal succession and growth patterns of Ulva pertusa and Ulva spp. (Chlorophyta, Ulvales). Hydrobiologia, 758(1): 223–233
https://doi.org/10.1007/s10750-015-2292-3
30 Zhang B, Perrie W, Li X, Pichel W G (2011). Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys Res Lett, 38: L10602
https://doi.org/10.1029/2011GL047013
31 Zhang J H, Huo Y Z, Zhang Z L, Yu K F, He Q, Zhang L H, Yang L L, Xu R, He P M (2013). Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming process in the Yellow Sea. Mar Environ Res, 92(6): 35–42
https://doi.org/10.1016/j.marenvres.2013.08.009
[1] Bartłomiej SZYPUŁA, Małgorzata WIECZOREK. Geomorphometric relief classification with the k-median method in the Silesian Upland, southern Poland[J]. Front. Earth Sci., 2020, 14(1): 152-170.
[2] Hongchun ZHU, Yuexue XU, Yu CHENG, Haiying LIU, Yipeng ZHAO. Landform classification based on optimal texture feature extraction from DEM data in Shandong Hilly Area, China[J]. Front. Earth Sci., 2019, 13(3): 641-655.
[3] Kevin C. Tse, Hon-Chim Chiu, Man-Yin Tsang, Yiliang Li, Edmund Y. Lam. An unsupervised learning approach to study synchroneity of past events in the South China Sea[J]. Front. Earth Sci., 2019, 13(3): 628-640.
[4] Jinwu TANG, Chunyan HU, Xingying YOU, Yunping YANG, Xiaofeng ZHANG, Jinyun DENG, Meng CHEN. The barrier river reach identification and classification in the Middle Yangtze River[J]. Front. Earth Sci., 2019, 13(3): 596-613.
[5] Xue DAI, Rongrong WAN, Guishan YANG, Xiaolong WANG, Ligang XU, Yanyan LI, Bing LI. Impact of seasonal water-level fluctuations on autumn vegetation in Poyang Lake wetland, China[J]. Front. Earth Sci., 2019, 13(2): 398-409.
[6] Xiaochen WANG, Yun SHAO, Fengli ZHANG, Wei TIAN. Comparison of C- and L-band simulated compact polarized SAR in oil spill detection[J]. Front. Earth Sci., 2019, 13(2): 351-360.
[7] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[8] Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015[J]. Front. Earth Sci., 2019, 13(1): 92-110.
[9] Parham PAHLAVANI, Behnaz BIGDELI. A mutual information-Dempster-Shafer based decision ensemble system for land cover classification of hyperspectral data[J]. Front. Earth Sci., 2017, 11(4): 774-783.
[10] Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery[J]. Front. Earth Sci., 2017, 11(4): 765-773.
[11] Hongjun SU,Yehua SHENG,Peijun DU,Chen CHEN,Kui LIU. Hyperspectral image classification based on volumetric texture and dimensionality reduction[J]. Front. Earth Sci., 2015, 9(2): 225-236.
[12] Jinpeng LI, Shikui DONG, Mingchun PENG, Xiaoyan LI, Shiliang LIU. Vegetation distribution pattern in the dam areas along middle-low reach of Lancang-Mekong River in Yunnan Province, China[J]. Front Earth Sci, 2012, 6(3): 283-290.
[13] Hongmei LI, Yanfang BAI, Yushou MA, . Using comprehensive and sequential vegetation classification system to predict the influence of climate change on vegetation succession of alpine grassland of Qinghai Plateau[J]. Front. Earth Sci., 2010, 4(1): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed