Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (2) : 437-454    https://doi.org/10.1007/s11707-022-0996-z
RESEARCH ARTICLE
Geological implications of elements of the Pleistocene mudstone with different organism compositions and enrichment environments in the Qaidam Basin, China
Jinqi QIAO1,2, Qingyong LUO1,2(), Chen ZHANG1,3, Zhenxue JIANG1,3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
2. Basin and Reservoir Research Center, China University of Petroleum, Beijing 102249, China
3. Unconventional Natural Gas Research Institute, China University of Petroleum, Beijing 102249, China
 Download: PDF(12965 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Trace elements and rare earth elements (REEs) of two kinds of organic facies samples representing marginal and more basin-center deposits from Pleistocene lacustrine mudstones in the central Qaidam Basin were studied to understand the provenance, palaeotectonic setting, hydrothermal activity, palaeoredox conditions and sedimentary rate. The results show that the lacustrine mudstones were mainly derived from felsic sources with little contribution from ancient crustal sediments and no ultramafic (ophiolitic) source. The mudstones were deposited in a continental island arc tectonic setting, which is consistent with the tectonic evolution of the Cenozoic basin. Both two organic facies samples were hydrothermal in origin based on the ternary diagram of Ni–Zn–Co and normalized REE patterns. However, this does not mean that the water column in paleolake was affected by hydrothermal fluids in situ. This signal might indicate hydrothermal origins from hot springs related to active faults around the basin rather than the deep hydrothermal fluids entering the sediments via deep faculties based on the comprehensive analyses of normalized REE patterns, negative Euanom (Eu anomaly), Y/Ho, Sm/Yb, and Eu/Sm. Redox proxies including U/Th, Ni/Co, and Mnanom values, are more sensitive for the studied samples indicating that most of the organic facies A samples were deposited under an oxygen-depleted condition, while the organic facies B samples were deposited under oxygen-rich conditions. Redox proxies of Ceanom values are unavailable for the organic facies B samples due to hypersaline environments, and V/Cr and V/(V + Ni) are invalid for the organic facies A samples, possibly because of their organism composition. The low Lan/Ybn values indicate high sedimentation rates, which is consistent with the average sedimentation rates of approximately 0.43 to 1.1 km/Ma. However, the Lan/Ybn is more likely affected by the provenance of the studied samples, so it should be used with caution.

Keywords elements      lacustrine mudstone      Pleistocene      Qigequan Formation      Qaidam Basin     
Corresponding Author(s): Qingyong LUO   
Online First Date: 15 March 2023    Issue Date: 04 August 2023
 Cite this article:   
Jinqi QIAO,Qingyong LUO,Chen ZHANG, et al. Geological implications of elements of the Pleistocene mudstone with different organism compositions and enrichment environments in the Qaidam Basin, China[J]. Front. Earth Sci., 2023, 17(2): 437-454.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-0996-z
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I2/437
Fig.1  (a) Geological setting and sample well locations, and (b and c) cross sections in SE–NE and NW–SE directions. The dashed line with an arrow illustrates the depocenter shift during the depositional history of the basin (Qiu et al., 2003).
Fig.2  Generalized Pleistocene stratigraphic column for the study area (modified after Jian et al., 2013 and Zhang et al., 2013a).
Fig.3  Chondrite-normalized rare earth element patterns of (a) organic facies A and (b) B samples in comparison with the seawater (Piepgras and Jacobsen, 1992), 13°N hydrothermal fluids (Douville et al., 1999), Rainbow Vent hydrothermal fluids (Douville et al. 2002), and submarine hydrothermal fluids (Hongo et al., 2007) compositions.
WellFm.Sample IDDepth/mTOC a)/%Organic FaciesFe b)ScTi c)VCrMn d)CoNiYZrLaCePrNdSmEuGdTbDyHoErTmYbLuHfU e)Th f)MREE
S 1K418-850794.760.83B42987.0014.234351.42103.0780.43832.5916.3545.7331.49214.8334.6570.178.2031.306.111.385.290.884.950.993.150.462.910.465.613.9815.41170.88
18-853801.4612.86A27958.009.613686.7372.6164.59442.5011.3247.1624.48171.4825.6053.606.2723.874.660.933.960.693.910.772.430.362.200.344.4114.8910.75129.59
18-856811.860.62B45850.0018.264663.67132.5796.08828.2918.4249.6031.79163.2038.1077.988.9433.616.451.595.450.905.031.003.160.472.990.474.383.2118.81186.13
18-857820.470.78B37884.0012.263266.8787.6268.14876.5214.8541.6626.81180.7331.9965.317.5928.755.511.104.610.764.230.842.660.402.490.394.652.7714.06156.63
K918-8581269.008.86A42532.0012.654673.93113.1384.07322.6818.1360.5428.21250.2832.4368.538.0130.245.831.084.730.814.540.922.940.442.740.436.5814.7413.74163.66
18-8601272.500.68B45787.0015.714588.94117.1385.82590.4717.1348.7326.38161.5732.4266.527.6828.915.531.044.510.764.190.832.640.402.480.394.253.5916.40158.30
18-8611279.4025.31A29036.009.323588.6076.8067.35284.4010.6848.5723.43177.0224.6550.585.8322.194.340.853.650.633.600.732.300.342.120.344.628.1510.29122.15
K1018-8621377.5016.73A49686.0010.303669.33186.7495.33350.7913.9259.5322.69393.7427.3756.216.5524.824.790.963.820.643.480.702.170.332.040.336.6819.2612.30134.20
18-8641380.506.49A51982.0011.514782.43113.9290.85272.6920.9088.3023.05279.0527.5257.436.6224.594.600.893.670.633.540.722.320.352.180.355.8613.4013.23135.42
T 1K1118-8671697.304.08A25921.008.803204.0385.7159.29742.829.7438.7223.31168.2624.8849.645.7622.244.360.853.690.633.440.692.170.321.960.323.959.939.40120.95
18-8681697.504.15A27629.008.713106.7986.2557.121078.0412.2239.8425.02185.1224.3348.565.6621.744.290.843.680.653.630.742.310.342.070.334.139.008.37119.18
18-8691697.709.91A37779.0012.284508.47147.75110.50335.2411.1592.8026.92234.3628.6759.766.9626.315.110.994.250.754.180.852.670.402.520.405.9610.3812.93143.81
Y 1K 418-872124.690.64B46200.0017.744722.24132.6895.03687.4617.5648.2732.45158.3938.5178.449.0033.926.581.725.550.935.121.023.200.482.940.474.234.7919.56187.86
18-873124.990.52B50743.0017.934605.34132.7095.721063.6019.5449.4229.28161.3335.2072.598.2331.066.021.505.040.844.650.943.010.452.850.454.303.1818.26172.85
S 2K218-876534.400.71B34510.0016.393713.13127.60107.86469.3814.9543.9626.32204.7130.6762.757.2727.205.091.174.110.704.000.822.640.402.540.415.272.9416.00149.78
18-878543.808.19A34223.0011.914421.0786.8875.60416.0212.5259.5827.50229.6229.6762.247.3027.815.491.074.480.784.380.882.790.412.580.415.9615.1912.56150.30
K318-879555.101.11B48230.0017.413591.42124.2095.691298.2919.1252.5432.62157.6736.5574.408.6232.646.271.265.270.904.961.003.160.472.950.474.103.1017.59178.94
18-880566.101.10B39452.0013.624248.9098.9774.39924.2214.5340.8927.97154.3632.6666.077.6228.865.581.104.650.784.310.862.680.402.480.404.033.4814.78158.45
K718-8921313.300.60B50617.0017.794384.99133.3496.061023.2318.9351.0729.13147.9333.4768.047.8829.405.611.104.700.804.500.912.900.442.730.433.973.9317.40162.90
K1018-8941266.701.00B36218.0011.153824.1184.4970.67931.3413.2744.7822.42118.9524.7550.895.8822.384.320.853.650.623.440.692.170.321.980.313.093.5511.35122.25
T 2K618-8951269.900.70B30807.0010.853268.5983.8164.54709.3412.5238.1120.14128.6820.7843.144.9518.893.720.733.140.553.070.621.950.301.840.303.243.289.54103.97
18-897235.100.79B28392.008.723200.1166.2650.601251.1010.0233.6919.55121.7820.3141.924.8418.483.610.703.030.532.960.601.870.281.710.273.065.389.15101.09
H 1K418-898255.900.70B31430.007.672548.0058.5044.29496.208.7625.5215.7386.7317.8736.674.2115.913.100.592.580.442.420.481.520.231.400.222.236.508.2087.65
18-8991082.700.66B38129.0014.104421.42103.1376.57955.9415.3643.2629.26157.9031.7664.877.5728.895.611.094.720.794.450.902.830.422.620.424.135.2814.28156.96
K1318-900982.200.69B32340.0011.203963.0584.7663.561173.7712.6937.1224.00148.7026.4255.276.3824.224.700.893.860.673.700.742.300.352.160.343.823.9812.03131.98
18-901985.800.82B39655.0012.584295.1695.5169.99726.6414.6042.2226.18150.3229.1860.167.0126.495.140.994.230.734.100.802.540.382.350.373.863.7712.84144.47
T 3K618-915631.300.49B44709.0017.343980.03128.4593.70775.0118.7049.9729.10167.5533.4868.387.9230.015.701.094.650.804.530.912.910.442.750.434.433.3617.12164.01
18-916646.110.77B39123.0016.223393.65116.2393.91853.7019.0652.7429.16189.8734.4571.038.2130.925.911.134.850.824.550.912.860.422.630.424.914.0616.31169.12
Tab.1  Elements concentrations (ppm) of the Pleistocene lacustrine mudstone from the Qaidam Basin, China
WellFm.Sample IDDepth/mTOC/%Organic FaciesΣLREE/ΣHREEEuanom a)La/YbTh/ScPranom b)Ceanom c)Zr/ScLa/ThY/NiCr/VTi/ZrLa/ScLa/CoCr/ThCr/NiMnanom d)Lan/YbnU / ThV / CrNi / CoV / (V + Ni)Gd N /YbNY/HoEu/SmSm/YbNormalized distribution of La-Th-Sc/%Normalized distribution of Zr/10-Th-Sc/%Normalized distribution of Ni-Zr-Co/%
LaThScZr/10ThScNiZrCo
S 1K418-850794.760.83B7.960.6911.931.080.990.9715.102.250.690.7820.262.442.125.221.760.170.810.261.282.800.691.4731.830.232.10542422423028296010
18-853801.4612.86A7.840.7311.631.120.990.9717.842.380.520.8921.502.662.266.011.370.090.791.381.124.170.611.4531.710.202.12562321462926405110
18-856811.860.62B8.560.7112.761.030.990.998.942.020.640.7228.582.092.075.111.940.140.860.171.382.690.731.4731.860.252.16512524313534266510
18-857820.470.78B8.560.6912.871.150.990.9714.742.280.640.7818.082.612.154.851.640.250.870.201.292.800.681.5031.750.202.22552421413228296110
K918-8581269.008.86A8.330.6711.851.090.990.9719.782.360.470.7418.672.561.796.121.39-0.230.801.071.353.340.651.4030.680.182.13552322492725394912
18-8601272.500.68B8.770.7013.051.040.990.9810.281.980.540.7328.402.061.895.231.760.000.880.221.362.840.711.4731.670.192.23502524333433286210
18-8611279.4025.31A7.900.7111.611.100.980.9818.982.400.480.8820.272.642.316.551.39-0.120.780.791.144.550.611.3932.110.112.0456232147282541509
K1018-8621377.5016.73A8.940.6913.411.190.990.9738.222.220.380.519.322.661.977.751.60-0.270.911.571.964.280.761.5132.590.202.3555252164201737559
18-8641380.506.49A8.840.6912.611.151.000.9924.252.080.260.8017.142.391.326.871.03-0.390.851.011.254.230.561.3632.040.192.11532522532522484111
T 1K1118-8671697.304.08A8.150.7212.681.070.980.9719.112.650.600.6919.042.832.556.311.530.340.861.061.453.970.691.5233.610.202.22582220482725385210
18-8681697.504.15A7.660.7111.730.960.990.9621.252.910.630.6616.782.791.996.831.430.480.791.081.513.260.681.4333.990.192.07592021522424385112
18-8691697.709.91A7.980.7011.381.050.990.9719.082.220.290.7519.242.332.578.551.19-0.170.770.801.348.320.611.3631.610.192.0353242348272550446
Y 1K 418-872124.690.64B8.540.7913.111.100.990.998.931.970.670.7229.812.172.194.861.970.060.890.241.402.750.731.5331.790.262.2451262330373325659
18-873124.990.52B8.480.6912.371.020.981.009.001.930.590.7228.551.961.805.241.940.210.840.171.392.530.731.4331.080.252.12492625313534266410
S 2K218-876534.400.71B8.580.7012.070.980.990.9812.491.920.600.8518.141.872.056.742.450.020.820.181.182.940.741.3132.070.232.0049252639303127649
18-878543.808.19A7.990.7111.511.050.990.9619.282.360.460.8719.252.492.376.021.27-0.030.781.211.154.760.591.4031.150.202.1355232248262542509
K318-879555.101.11B8.320.6912.371.010.990.989.062.080.620.7722.782.101.915.441.820.320.840.181.302.750.701.4432.550.202.12512524313534286210
18-880566.101.10B8.570.8413.161.090.990.9811.342.210.680.7527.532.402.255.031.820.260.890.241.332.810.711.5132.690.202.25532422353431286210
K718-8921313.300.60B8.360.7012.260.981.000.998.311.920.570.7229.641.881.775.521.880.190.830.191.392.700.721.3931.880.202.05492526303536276310
K1018-8941266.701.00B8.270.6912.511.020.980.9810.672.180.500.8432.152.221.866.231.580.300.850.471.203.370.651.4932.500.202.18522424353332335710
T 2K618-8951269.900.70B7.840.6811.320.880.980.9811.862.180.530.7725.401.921.666.771.690.250.760.681.303.040.691.3832.700.202.03502326392933315810
18-897235.100.79B8.000.6811.891.050.980.9813.972.220.580.7626.282.332.035.531.500.530.800.581.313.360.661.4332.780.192.12532423413029335710
H 1K418-898255.900.70B8.430.6812.771.070.990.9911.312.180.620.7629.382.332.045.401.740.080.860.481.322.910.701.4932.440.192.21532423353331296110
18-8991082.700.66B8.140.9312.131.010.990.9711.202.220.680.7428.002.252.075.361.770.290.820.251.352.820.701.4632.560.192.14532423363232296110
K1318-900982.200.69B8.350.8712.251.070.990.9813.282.200.650.7526.652.362.085.281.710.450.830.331.332.930.701.4532.440.192.18532423393229325711
18-901985.800.82B8.310.6912.401.020.990.9711.952.270.620.7328.572.322.005.451.660.150.840.291.362.890.691.4532.530.192.1853242337323124688
T 3K618-915631.300.49B8.410.8812.150.990.990.989.661.960.580.7323.751.931.795.471.880.120.820.201.372.670.721.3632.070.192.07492526333334276310
18-916646.110.77B8.680.6913.091.010.990.9811.712.110.550.8117.872.121.815.761.780.220.880.251.242.770.691.4932.040.192.24512424373231296011
Tab.2  Calculated elemental ratios/normalized distribution of the Pleistocene lacustrine mudstones from the Qaidam Basin, China
Fig.4  (a) La/Yb vs. ΣREE illustrating source rocks of samples (after Allègre and Minster, 1978) and (b) Th/Sc vs. Zr/Sc illustrating weathering and sediment recycling (after McLennan et al., 1993).
Fig.5  (a) Th/Sc vs. Euanom (after McLennan et al., 1993; Cullers and Podkovyrov, 2002) and (b) La/Th vs. Hf (after Floyd and Leveridge, 1987) for sediments discrimination. Euanom = EuN/(SmN × GdN)1/2.
Fig.6  Distributions of (a) Ni vs. Cr (fields are after Condie, 1993) and (b) Cr/V vs. Y/Ni (after Hiscott, 1984) for the studied samples.
Fig.7  (a) La-Th-Sc and (b) Th-Sc-Zr/10 (both after Bhatia and Crook, 1986) tectonic discrimination diagrams for the studied samples.
Fig.8  Ti/Zr vs. La/Sc diagram showing fields for tectonic settings (after Bhatia and Crook, 1986).
Fig.9  (a) Ternary diagram of Co-Ni-Zn showing fields of hydrothermal and hydrogenous sediments (after Crerar, 1980), (b) Eu/Sm vs. Sm/Yb, (c) Sm/Yb vs. Y/Ho and (d) Eu/Sm vs. Y/Ho showing the effect of hydrogenous deposits/seawater interaction with variable degrees of hydrothermal fluids (b, c and d after Alexander et al., 2008).
Fig.10  Distribution of (a) U/Th vs. Ni/Co, (b) V/Cr vs. V/(V + Ni), (c) Ceanom vs. Mnanom and (d) Pranom vs. Ceanom (after Bau and Dulski, 1996) in the studied samples, showing paleoredox conditions. Mnanom = log (Mnn/Fen); Ceanom = Cen/(0.5 × (Lan + Prn)), Pranom = Prn/(0.5 × (Cen + Ndn)).
Fig.11  Lan/Ybn vs. each accumulate rate of (a) original TOC, (b) bulk sample, (c) silicates and (d) carbonates for the studied samples. The accumulated rates are reported by Qiao et al., (2021).
1 B W, Alexander M, Bau P, Andersson P Dulski (2008). Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa.Geochim Cosmochim Acta, 72(2): 378–394
https://doi.org/10.1016/j.gca.2007.10.028
2 F, Ali S, Zhang M, Hanif M, Mohibullah Y, Zhang M, Usman S, Wang X, Liu P, Ma D Huang (2022). Geochemical investigation of low latitude black shale intervals of the Lower to Middle Jurassic succession, Indus Basin, Pakistan. Front Earth Sci, doi:10.1007/s11707-021-0943-4
3 C J, Allègre J F Minster (1978). Quantitative models of trace element behavior in magmatic processes.Earth Planet Sci Lett, 38(1): 1–25
https://doi.org/10.1016/0012-821X(78)90123-1
4 Z, An J E, Kutzbach W L, Prell S C Porter (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times.Nature, 411(6833): 62–66
https://doi.org/10.1038/35075035 pmid: 11333976
5 J S, Armstrong-Altrin S P Verma (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings.Sediment Geol, 177(1–2): 115–129
https://doi.org/10.1016/j.sedgeo.2005.02.004
6 J, Bao Y, Wang C, Song Y, Feng C, Hu S, Zhong J Yang (2017). Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate.Global Planet Change, 155: 56–69
https://doi.org/10.1016/j.gloplacha.2017.03.006
7 M, Bau P Dulski (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa.Precambrian Res, 79(1–2): 37–55
https://doi.org/10.1016/0301-9268(95)00087-9
8 A, Bellanca M, Claps E, Erba D, Masetti R, Neri Silva I, Premoli F Venezia (1996). Orbitally induced limestone/marlstone rhythms in the Albian—Cenomanian Cismon section (Venetian region, northern Italy): sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol, 126(3–4): 227–260
9 A, Bellanca D, Masetti R Neri (1997). Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem Geol, 141(3–4): 141–152
10 M I, Bhat S K Ghosh (2001). Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: implications for their provenance and weathering. Precambrian Res, 108(1–2): 1–16
11 M R Bhatia (1983). Plate tectonics and geochemical composition of sandstones.J Geol, 91(6): 611–627
https://doi.org/10.1086/628815
12 M R, Bhatia K A Crook (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.Contrib Mineral Petrol, 92(2): 181–193
https://doi.org/10.1007/BF00375292
13 R H, Byrne K H Kim (1990). Rare earth element scavenging in seawater.Geochim Cosmochim Acta, 54(10): 2645–2656
https://doi.org/10.1016/0016-7037(90)90002-3
14 J, Chen T J, Algeo L, Zhao Z Q, Chen L, Cao L, Zhang Y Li (2015). Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of south China.Earth Sci Rev, 149: 181–202
https://doi.org/10.1016/j.earscirev.2015.01.013
15 J H, Choi Y Hariya (1992). Geochemistry and depositional environment of Mn oxide deposits in the Tokoro Belt, northeastern Hokkaido. Japan.Econ Geol, 87(5): 1265–1274
https://doi.org/10.2113/gsecongeo.87.5.1265
16 M K Clark (2011). Early Tibetan Plateau uplift history eludes.Geology, 39(10): 991–992
https://doi.org/10.1130/focus102011.1
17 K C Condie (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales.Chem Geol, 104(1–4): 1–37
https://doi.org/10.1016/0009-2541(93)90140-E
18 R, Cox D R, Lowe R L Cullers (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochim Cosmochim Acta, 59(14): 2919–2940
https://doi.org/10.1016/0016-7037(95)00185-9
19 D A Crerar (1980). Geochemistry of manganese: an overview. In: Varentsov I M, Grassely G, eds. Geology and Geochemistry of Manganese. Stuttgart: E’Schweizerbart’sche Verlag, Vol.l, 353–365
20 R L Cullers (1994). The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in ansas, USA.Geochim Cosmochim Acta, 58(22): 4955–4972
https://doi.org/10.1016/0016-7037(94)90224-0
21 R L Cullers (1995). The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains Region, Colorado, USA. Chem Geol, 123(1–4): 107–131
22 R L Cullers (2000). The geochemistry of shales, siltstones, and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies.Lithos, 51: 181–203
https://doi.org/10.1016/S0024-4937(99)00063-8
23 R L Cullers (2002). Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA.Chem Geol, 191(4): 305–327
https://doi.org/10.1016/S0009-2541(02)00133-X
24 R L, Cullers T, Barrett R, Carlson B Robinson (1987). Rare-earth element and mineralogic changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chem Geol, 63(3–4): 275–297
25 R L, Cullers P Berendsen (1998). The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, USA.Eur J Mineral, 10(5): 987–1002
https://doi.org/10.1127/ejm/10/5/0987
26 R L, Cullers V N Podkovyrov (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res, 104(1–2): 77–1–2
27 R L, Cullers V N Podkovyrov (2002). The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Res, 117 (3–4): 157–183
28 Y Q, Dang W Z, Zhao A G, Su S C, Zhang M W, Li Z Q, Guan D D, Ma X L, Chen Y H, Shuai H T, Wang Y H, Tan Z Y Xu (2008). Biogenic gas systems in eastern Qaidam Basin.Mar Petrol Geol, 25: 344–356
29 E, Douville P, Bienvenu J L, Charlou J P, Donval Y, Fouquet P, Appriou T Gamo (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems.Geochim Cosmochim Acta, 63(5): 627–643
https://doi.org/10.1016/S0016-7037(99)00024-1
30 E, Douville J L, Charlou E H, Oelkers P, Bienvenu Colon C F, Jove J P, Donval Y, Fouquet D, Prieur P Appriou (2002). The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol, 184(1–2): 37–48
31 G, Dupont-Nivet W, Krijgsman C G, Langereis H A, Abels S, Dai X Fang (2007). Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition.Nature, 445(7128): 635–638
https://doi.org/10.1038/nature05516 pmid: 17287807
32 H, Elderfield M J Greaves (1982). The rare earth elements in seawater.Nature, 296(5854): 214–219
https://doi.org/10.1038/296214a0
33 X M, Fang W L, Zhang Q Q, Meng J J, Gao X M, Wang J, King C H, Song S, Dai Y F Miao (2007). High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet Sci Lett, 258(1–2): 293–306
34 R, Feng R Kerrich (1990). Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting.Geochim Cosmochim Acta, 54(4): 1061–1081
https://doi.org/10.1016/0016-7037(90)90439-R
35 P A, Floyd B E, Leveridge W, Franke R, Shail W Dörr (1990). Provenance and depositional environment of Rhenohercynian synorogenic greywackes from the Giessen Nappe, Germany.Geol Rundsch, 79(3): 611–626
https://doi.org/10.1007/BF01879205
36 P, Floyd B Leveridge (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones.J Geol Soc London, 144(4): 531–542
https://doi.org/10.1144/gsjgs.144.4.0531
37 Y, Fouquet J L, Charlou Stackelberg U, von M, Wiedicke J, Erzinger P M, Herzig R Muehe (1993). Metallogenesis in back-arc environments: the Lau Basin example.Economic Geology, 88(8): 2154–2181
https://doi.org/10.2113/gsecongeo.88.8.2154
38 J I, Garver P R, Royce T A Smick (1996). Chromium and nickel in shale of the Taconic Foreland: a case study for the provenance of fine-grained sediments with an ultramafic source.J Sediment Res, 66: 100–106
39 G, Gehrels P, Kapp P, DeCelles A, Pullen R, Blakey A, Weislogel L, Ding J, Guynn A, Martin N, McQuarrie A Yin (2011). Detrital zircon geochronology of pre-Tertiary strata in the Tibetan–Himalayan orogen.Tectonics, 30(5): TC5016
https://doi.org/10.1029/2011TC002868
40 C R, German H Elderfield (1990). Application of the Ce anomaly as a paleoredox indicator: the ground rules.Paleoceanography, 5(5): 823–833
https://doi.org/10.1029/PA005i005p00823
41 S J, Goldstein S B Jacobsen (1988). Rare earth elements in river waters.Earth Planet Sci Lett, 89(1): 35–47
https://doi.org/10.1016/0012-821X(88)90031-3
42 A D, Hanson B D, Ritts D, Zinniker J M, Moldowan U Biffi (2001). Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China.AAPG Bull, 85: 601–619
43 T M, Harrison P, Copeland W S F, Kidd A Yin (1992). Raising tibet.Science, 255(5052): 1663–1670
https://doi.org/10.1126/science.255.5052.1663 pmid: 17749419
44 J R, Hatch J S Leventhal (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A.Chem Geol, 99(1–3): 65–82
https://doi.org/10.1016/0009-2541(92)90031-Y
45 R N Hiscott (1984). Ophiolitic source rocks for Taconic-age flysch: trace element evidence.Geol Soc Am Bull, 95(11): 1261–1267
https://doi.org/10.1130/0016-7606(1984)95<1261:OSRFTF>2.0.CO;2
46 Y, Hongo H, Obata T, Gamo M, Nakaseama J, Ishibashi U, Konno S, Saegusa S, Ohkubo U Tsunogai (2007). Rare Earth Elements in the hydrothermal system at Okinawa Trough back-arc basin.Geochem J, 41(1): 1–15
https://doi.org/10.2343/geochemj.41.1
47 L E J Ibach (1982). Relationship between sedimentation rate and total organic carboncontent in ancient marine sediments.AAPG Bull, 66: 170–188
48 X, Jian P, Guan W, Zhang F Feng (2013). Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin, northeastern Tibetan Plateau: implications for provenance and weathering.Chem Geol, 360-361: 74–88
https://doi.org/10.1016/j.chemgeo.2013.10.011
49 K H, Johannesson W B, Lyons D A Bird (1994). Rare earth element concentrations and speciation in alkaline lakes from the western USA.Geophys Res Lett, 21(9): 773–776
https://doi.org/10.1029/94GL00005
50 M J Johnsson (1993). The system controlling the composition of clastic sediments. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments.Geological Society of America Special Paper, 284: 1–19
51 B, Jones D A C Manning (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.Chem Geol, 111(1–4): 111–129
https://doi.org/10.1016/0009-2541(94)90085-X
52 M E, Katz K G, Miller J D, Wright B S, Wade J V, Browning B S, Cramer Y Rosenthal (2008). Stepwise transition from the Eocene greenhouse to the Oligocene icehouse.Nat Geosci, 1(5): 329–334
https://doi.org/10.1038/ngeo179
53 M L, Kent-Corson B D, Ritts G, Zhuang P M, Bovet S A, Graham Chamberlain C Page (2009). Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet Sci Lett, 282(1–4): 158–166
54 J E, Kutzbach W L, Prell Wm F Ruddiman (1993). Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau.J Geol, 101(2): 177–190
https://doi.org/10.1086/648215
55 T A, LaMaskin R, Dorsey J D Vervoort (2008). Tectonic controls on mudrock geochemistry, Mesozoic rocks of eastern Oregon and western Idaho, USA: implications for Cordilleran tectonics.J Sediment Res, 78(12): 765–783
https://doi.org/10.2110/jsr.2008.087
56 J J, Li X M, Fang C H, Song B T, Pan Y Z, Ma M D Yan (2014). Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects onclimatic and environmental changes.Quat Res, 81(3): 400–423
https://doi.org/10.1016/j.yqres.2014.01.002
57 J, Li F, Chen Z, Ling T Li (2021b). Lithium sources in oilfield waters from the Qaidam Basin, Tibetan Plateau: geochemical and Li isotopic evidence.Ore Geol Rev, 139: 104481
https://doi.org/10.1016/j.oregeorev.2021.104481
58 M, Li X, Fang Z, Wang J, Li M, Yan A, Galy J, Wang S, Lu L Zhu (2022). Using mineralogy and Sr-Nd isotopes of gypsum to constrain the provenance of sediments in the western Qaidam Basin, northern Tibetan Plateau: implications for neo-tectonic activities.J Asian Earth Sci, 223: 104983
https://doi.org/10.1016/j.jseaes.2021.104983
59 Y, Li Z, Wang P, Wu S Meng (2021a). Paleoenvironment reconstruction of the upper paleozoic in the linxing area, northeastern Ordos Basin, China.AAPG Bull, 105(12): 2545–2574
https://doi.org/10.1306/07022119233
60 J, Lv S, Zhang N, Yang C, Fu X, Yan Y Li (2021). Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China.Front Earth Sci, 15(4): 737–753
https://doi.org/10.1007/s11707-021-0893-x
61 P, Möller M Bau (1993). Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet Sci Lett, 117(3–4): 671–676
62 L, Machhour J, Philip J L Oudin (1994). Formation of laminite deposits in anaerobic—dysaerobic marine environments. Mar Geol, 117(1–4): 287–302
63 C G, Mattinson J L, Wooden J X, Zhang D K Bird (2009). Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China. J Asian Earth Sci, 35(3–4): 298–309
64 M T, McCulloch G J Wasserburg (1978). Sm-nd and rb-sr chronology of continental crust formation.Science, 200(4345): 1003–1011
https://doi.org/10.1126/science.200.4345.1003 pmid: 17740673
65 S M McLennan (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary process. In: Lipin B R, McKay G A, eds. Geochemistry and Mineralogy of Rare Earth Elements.Rev Mineral, 21: 169–200
66 S M, McLennan S, Hemming D K, McDaniel G N Hanson (1993). Geochemical approaches to sedimentation, provenance, and tectonics.Special Papers-Geological Society of America, 21–40
67 S M, McLennan S R Taylor (1991). Sedimentary rocks and crustal evolution: tectonic setting and secular trends.J Geol, 99(1): 1–21
https://doi.org/10.1086/629470
68 S M, McLennan S R, Taylor K A Eriksson (1983). Geochemistry of Archean shales from the Pilbara Supergroup, western Australia.Geochim Cosmochim Acta, 47(7): 1211–1222
https://doi.org/10.1016/0016-7037(83)90063-7
69 S M, McLennan S R, Taylor M T, McCulloch J B Maynard (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations.Geochim Cosmochim Acta, 54(7): 2015–2050
https://doi.org/10.1016/0016-7037(90)90269-Q
70 Q Q, Meng C H, Song J S, Nie C, Liu P J, He F B, Liu L Li (2020). Middle-late Miocene rapid exhumation of the southern Qilian Shan and implications for propagation of the Tibetan Plateau.Tectonophysics, 77(5): 228279
71 C A, Menold C E, Manning A, Yin P, Tropper X H, Chen X F Wang (2009). Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahighpressure eclogites in the North Qaidam metamorphic belt, western China. J Asian Earth Sci, 35(3–4): 273–284
72 Y, Miao X, Fang M, Herrmann F, Wu Y, Zhang D Liu (2011). Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon.Palaeogeogr Palaeoclimatol Palaeoecol, 299(1–2): 30–38
https://doi.org/10.1016/j.palaeo.2010.10.026
73 A, Michard F Albarède (1986). The REE content of some hydrothermal fluids. Chem Geol, 55(1–2): 51–60
74 P, Molnar P, England J Martinod (1993). Mantle dynamics, uplift of the Tibetan plateau and the Indian monsoon.Rev Geophys, 31(4): 357–396
https://doi.org/10.1029/93RG02030
75 W B, Nance S R Taylor (1976). Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks.Geochim Cosmochim Acta, 40(12): 1539–1551
https://doi.org/10.1016/0016-7037(76)90093-4
76 B K, Nelson D J DePaolo (1988). Comparison of isotopic and petrographic provenance indicators in sediments from Tertiary continental basins of New Mexico.J Sediment Res, 58(2): 348–357
77 X, Pang W, Zhao A, Su S, Zhang M, Li Y, Dang F, Xu R, Zhou D, Zhang Z, Xu Z, Guan J, Chen S Li (2005). Geochemistry and origin of the giant Quaternary shallow gas accumulations in the eastern Qaidam Basin, NW China.Org Geochem, 36(12): 1636–1649
https://doi.org/10.1016/j.orggeochem.2005.08.013
78 D H, Pi C Q, Liu G A, Shields-Zhou S Y Jiang (2013). Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, south China: constraints for redox environments and origin of metal enrichments.Precambrian Res, 225: 218–229
https://doi.org/10.1016/j.precamres.2011.07.004
79 D J, Piepgras S B Jacobsen (1992). The behavior of rare earth elements in seawater: precise determination of variations in the North Pacific water column.Geochim Cosmochim Acta, 56(5): 1851–1862
https://doi.org/10.1016/0016-7037(92)90315-A
80 J, Qiao S, Grohmann A, Baniasad C, Zhang Z, Jiang R Littke (2021). High microbial gas potential of Pleistocene lacustrine deposits in the central Qaidam Basin, China: an organic geochemical and petrographic assessment.Int J Coal Geol, 245: 103818
https://doi.org/10.1016/j.coal.2021.103818
81 J, Qiao R, Littke S, Grohmann C, Zhang Z, Jiang H, Strauss L Zieger (2022). Climatic and environmental conditions during the Pleistocene in the Central Qaidam Basin, NE Tibetan Plateau: evidence from GDGTs, stable isotopes and major and trace elements of the Qigequan Formation.Int J Coal Geol, 254: 103958
https://doi.org/10.1016/j.coal.2022.103958
82 J, Qiao L, Liu X Shang (2020). Deposition conditions of the jurassic lacustrine source rocks in the East Fukang sag, Junggar Basin, NW China: evidence from major and trace elements.Geol J, 55(7): 4936–4953
https://doi.org/10.1002/gj.3714
83 N, Qiu Y, Kang Z Jin (2003). Temperature and pressure field in the Tertiary succession of the western Qaidam Basin, northeast Qinghai-Tibet Plateau, China.Mar Pet Geol, 20(5): 493–507
https://doi.org/10.1016/S0264-8172(03)00080-1
84 G, Ramstein F, Fluteau J, Besse S Joussaume (1997). Effect on orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years.Nature, 386(6627): 788–795
https://doi.org/10.1038/386788a0
85 A B, Rieser Y, Liu J, Genser F, Neubauer R, Handler G, Friedl X H Ge (2006a). 40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China.Geol Soc Am Bull, 118(11–12): 1522–1534
https://doi.org/10.1130/B25962.1
86 A B, Rieser Y, Liu J, Genser F, Neubauer R, Handler X H Ge (2006b). Uniform Permian 40Ar/39Ar detrital mica ages in the eastern Qaidam Basin (NW China): where is the source?.Terra Nova, 18(1): 79–87
https://doi.org/10.1111/j.1365-3121.2005.00666.x
87 A B, Rieser F, Neubauer Y, Liu X Ge (2005). Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: tectonic vs. climatic control.Sediment Geol, 177(1–2): 1–18
https://doi.org/10.1016/j.sedgeo.2005.01.012
88 B D, Ritts U Biffi (2001). Mesozoic northeast Qaidam basin: response to contractional reactivation of the Qilian Shan, and implications for the extent of Mesozoic intracontinental deformation in central Asia.Mem Geol Soc Am, 194: 293–316
https://doi.org/10.1130/0-8137-1194-0.293
89 B P, Roser R J Korsch (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio.J Geol, 94(5): 635–650
https://doi.org/10.1086/629071
90 L H, Royden B C, Burchfiel der Hilst R D van (2008). The geological evolution of the Tibetan Plateau.Science, 321(5892): 1054–1058
https://doi.org/10.1126/science.1155371 pmid: 18719275
91 K M, Ryan D M Williams (2007). Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chem Geol, 242(1–2): 103–125
92 C, Shi J, Cao S, Han K, Hu L, Bian S Yao (2021). A review of polymetallic mineralization in lower Cambrian black shales in South China: combined effects of seawater, hydrothermal fluids, and biological activity.Palaeogeogr Palaeoclimatol Palaeoecol, 561: 110073
https://doi.org/10.1016/j.palaeo.2020.110073
93 C, Shi M, Yan Q Chi (2007). Abundances of chemical elements of the granitoids in different geotectonic units of China and their characteristics.Front Earth Sci China, 1(3): 309–321
https://doi.org/10.1007/s11707-007-0038-x
94 Y, Shuai S, Zhang S E, Grasby Z, Chen D, Ma L, Wang Z, Li C Wei (2013). Controls on biogenic gas formation in the Qaidam Basin, northwestern China.Chem Geol, 335: 36–47
https://doi.org/10.1016/j.chemgeo.2012.10.046
95 S G, Song L F, Zhang Y L, Niu L, Su P, Jian D Y Liu (2005). Geochronology of diamondbearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: a record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet Sci Lett, 234(1–2): 99–118
96 S, Song L, Su Y, Niu G, Zhang L Zhang (2009). Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: a review. J Asian Earth Sci, 35(3–4): 285–297
97 R Stein (1986). Organic carbon and sedimentation rate–further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean. Mar Geol, 72(3–4): 199–209
98 I, Stober J, Zhong L, Zhang K Bucher (2016). Deep hydrothermal fluid-rock interaction: the thermal springs of Da Qaidam, China.Geofluids, 16(4): 711–728
https://doi.org/10.1111/gfl.12190
99 J, Sun J, Ye W, Wu X, Ni S, Bi Z, Zhang W, Liu J Meng (2010). Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior.Geology, 38(6): 515–518
https://doi.org/10.1130/G30776.1
100 Q, Sun Z, Wang J, Chen W Feng (2009). Climate implications of major geochemical elements in the Holocene sediments of the North and East China monsoonal regions.Front Earth Sci, 3(3): 291–296
https://doi.org/10.1007/s11707-009-0035-3
101 P, Tapponnier X, Zhiqin F, Roger B, Meyer N, Arnaud G, Wittlinger Y Jingsui (2001). Oblique stepwise rise and growth of the Tibet Plateau.Science, 294(5547): 1671–1677
https://doi.org/10.1126/science.105978 pmid: 11721044
102 S R, Taylor S M McLennan (1985). The Continental Crust: Its Composition and Evolution. London: Blackwell Scientific
103 S R, Taylor S M, McLennan M T McCulloch (1983). Geochemistry of loess, continental crustal composition and crustal model ages.Geochim Cosmochim Acta, 47(11): 1897–1905
https://doi.org/10.1016/0016-7037(83)90206-5
104 N P, Tribovillard T J, Algeo T, Lyons A Riboulleau (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol, 232(1–2): 12–32
105 R V Tyson (2001). Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study.Org Geochem, 32(2): 333–339
https://doi.org/10.1016/S0146-6380(00)00161-3
106 C, Wang X, Zhao Z, Liu P C, Lippert S A, Graham R S, Coe H, Yi L, Zhu S, Liu Y Li (2008). Constraints on the early uplift history of the Tibetan Plateau.Proc Natl Acad Sci USA, 105(13): 4987–4992
https://doi.org/10.1073/pnas.0703595105 pmid: 18362353
107 T, Wang S, Yang S, Duan H, Chen H, Liu J Cao (2015). Multi-stage primary and secondary hydrocarbon migration and accumulation in lacustrine jurassic petroleum systems in the northern Qaidam Basin, NW China.Mar Pet Geol, 62: 90–101
https://doi.org/10.1016/j.marpetgeo.2015.01.015
108 H, Wen R, Zheng W, Geng M, Fan M Wang (2007). Characteristics of rare earth elements of lacustrine exhalative rock in the Xiagou Formation of Lower Cretaceous in Qingxi sag, Jiuxi Basin.Front Earth Sci China, 1(3): 333–340
https://doi.org/10.1007/s11707-007-0040-3
109 Z, Wu S, He Z, He X, Li G, Zhai Z Huang (2022). Petrographical and geochemical characterization of the Upper Permian Longtan formation and Dalong Formation in the Lower Yangtze region, South China: implications for provenance, paleoclimate, paleoenvironment and organic matter accumulation mechanisms.Mar Pet Geol, 139: 105580
https://doi.org/10.1016/j.marpetgeo.2022.105580
110 A, Yin T M Harrison (2000). Geologic evolution of the Himalayan–Tibetan orogen.Annu Rev Earth Planet Sci, 28(1): 211–280
https://doi.org/10.1146/annurev.earth.28.1.211
111 J, Yu C, Gao A, Cheng Y, Liu L, Zhang X He (2013). Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China.Ore Geol Rev, 50: 171–183
https://doi.org/10.1016/j.oregeorev.2012.11.001
112 G, Zhang S, Song L, Zhang Y Niu (2008). The subducted oceanic crust within continental-type UHP metamorphic belt in the north Qaidam, NW China: evidence from petrology, geochemistry and geochronology. Lithos, 104(1–4): 99–118
113 J X, Zhang C G, Mattinson F C, Meng H J, Yang Y S Wan (2009). U–Pb geochronology of paragneisses and metabasite in the Xitieshan area, north Qaidam Mountains, western China: constraints on the exhumation of HP/UHP metamorphic rocks. J Asian Earth Sci, 35(3–4): 245–258
114 M, Zhang Z, Liu S, Xu P, Sun X Hu (2013). Element response to the ancient lake information and its evolution history of argillaceous source rocks in the Lucaogou Formation in Sangonghe Area of Southern Margin of Junggar Basin.J Earth Sci, 24(6): 987–996
https://doi.org/10.1007/s12583-013-0392-4
115 S C, Zhang M W, Li Y H, Shuai L, Huang A G, Su Z X Li (2014). Biogeochemical identification of the Quaternary biogenic gas source rock in the Sanhu Depression, Qaidam Basin.Org Geochem, 73: 101–108
https://doi.org/10.1016/j.orggeochem.2014.05.014
116 S C, Zhang Y H, Shuai L, Huang L Q, Wang J, Su H P, Huang D D, Ma M W Li (2013a). Timing of biogenic gas formation in the eastern Qaidam Basin, NW China.Chem Geol, 352: 70–80
https://doi.org/10.1016/j.chemgeo.2013.06.001
117 G, Zhuang J K, Hourigan P L, Koch B D, Ritts M L Kent-Corson (2011a). Isotopic constraints on intensified aridity in Central Asia around 12 Ma. Earth Planet Sci Lett, 312(1–2): 152–163
118 G, Zhuang J K, Hourigan B D, Ritts M L Kent-Corson (2011b). Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, northwest China.Am J Sci, 311(2): 116–152
https://doi.org/10.2475/02.2011.02
119 G, Zhuang Y G, Zhang J, Hourigan J, Hourigan B, Ritts M, Hren M, Hou M, Wu B Kim (2019). Microbial and geochronologic constraints on the Neogene paleotopography of northern Tibetan Plateau.Geophys Res Lett, 46(3): 1312–1319
https://doi.org/10.1029/2018GL081505
[1] Qingfeng LU, Shenjun QIN, Hongyang BAI, Wenfeng WANG, De’e QI, Xin HE, Bofei ZHANG. Geochemistry of rare earth elements and yttrium in Late Permian coals from the Zhongliangshan coalfield, southwestern China[J]. Front. Earth Sci., 2023, 17(1): 230-250.
[2] Fahad ALI, Shiqi ZHANG, Muhammad HANIF, Mohibullah MOHIBULLAH, Yaxuan ZHANG, Muhammad USMAN, Sheng WANG, Xueliang LIU, Pengjie MA, Dongmou HUANG. Geochemical investigation of low latitude black shale intervals of the Lower to Middle Jurassic succession, Indus Basin, Pakistan[J]. Front. Earth Sci., 2022, 16(3): 568-586.
[3] Yuehua ZHAO, Shouyu CHEN, Jianli CHEN, Shuaiji WU. Trace elements of pyrite and S, H, O isotopes from the Laowan gold deposit in Tongbai, Henan Province, China: implications for ore genesis[J]. Front. Earth Sci., 2020, 14(3): 578-600.
[4] F DARABI-GOLESTAN, A HEZARKHANI. Applied statistical functions and multivariate analysis of geochemical compositional data to evaluate mineralization in Glojeh polymetallic deposit, NW Iran[J]. Front. Earth Sci., 2019, 13(1): 229-246.
[5] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
[6] Fang HAN, Kexin ZHANG, Junliang JI, Yadong XU, Fenning CHEN, Xiaohu KOU. Late Pleistocene sedimentary sequences and paleoclimate changes in Xunhua basin in the upper reach of Yellow River in China[J]. Front Earth Sci, 2012, 6(3): 297-305.
[7] WEI Hualing, FANG Nianqiao, DING Xuan, LIU Xiuming, NIE Lanshi. Pelagic records from the Equatorial Ninetyeast Ridge and significant environmental events during the past 3.5 Ma[J]. Front. Earth Sci., 2008, 2(2): 162-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed