Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (10) : 130    https://doi.org/10.1007/s11684-022-1565-0
RESEARCH ARTICLE
Tailoring the simultaneous abatement of methanol and NOx on Sb-Ce-Zr catalysts via copper modification
Xiaoqiang Wang1,2, Yanye Zhu1, Yue Liu1(), Xiaole Weng1, Zhongbiao Wu1
1. Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
2. College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
 Download: PDF(4718 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Cu addition enhances CH3OH oxidation and alleviates its inhibitory effect on SCR.

● Cu addition improves the activation of SCR reactants in the presence of methanol.

● Damaged structure by more Cu addition decreases specific surface area and acidity.

● Excessive Cu addition would lead to the narrowing of SCR temperature window.

Simultaneously removal of NOx and VOCs over NH3-SCR catalysts have attracted lots of attention recently. However, the presence of VOCs would have negative effect on deNOx efficiency especially at low temperature. In this study, copper modification onto Sb0.5CeZr2Ox (SCZ) catalyst were performed to enhance the catalytic performance for simultaneous control of NOx and methanol. It was obtained that copper addition could improve the low-temperature activity of both NOx conversion and methanol oxidation, where the optimal catalyst (Cu0.05SCZ) exhibited a deNOx activity of 96% and a mineralization rate of 97% at 250 °C, which are around 10% higher than that of Cu free sample. The characterization results showed that copper addition could obviously enhance the redox capacity of the catalysts. As such, the inhibition effect of methanol incomplete oxidation on NO adsorption and NH3 activation were then lessened and the conversion of surface formamide species were also accelerated, resulting in the rising of NOx conversion at low temperature. However, excessive copper addition would damage the Sb-Ce-Zr oxides solid solution structure owing to Cu-Ce strong interactions, decreasing the surface area and acidity. Meanwhile, due to easier over-oxidation of NH3 with more Cu addition, the temperature window for NOx conversion would become quite narrow. These findings could provide useful guidelines for the synergistic removal of VOCs over SCR catalyst in real application.

Keywords Copper modification      Sb-CeZr2Ox catalyst      NOx      Methanol      Simultaneous removal     
Corresponding Author(s): Yue Liu   
Issue Date: 31 March 2022
 Cite this article:   
Xiaoqiang Wang,Yanye Zhu,Yue Liu, et al. Tailoring the simultaneous abatement of methanol and NOx on Sb-Ce-Zr catalysts via copper modification[J]. Front. Environ. Sci. Eng., 2022, 16(10): 130.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11684-022-1565-0
https://academic.hep.com.cn/fese/EN/Y2022/V16/I10/130
Fig.1  The simultaneous catalytic abatement performance of methanol and NOx over CuxSCZ catalysts: (a) deNOx activity, (b) N2 selectivity, (c) CH3OH conversion, and (d) CO2 yield. Reaction conditions: [NO] = [NH3] = 0.06%, [CH3OH] = 0.12%, [O2] = 5 vol.%, [H2O] = 5 vol.%, N2 balance, GHSV = 100, 000 h?1.
Sample Specific surface area(m2/g) Total pore volume(cm3/g) Average pore size(nm) Ce3+/Cetotal Oβ/Ototal Cu+/Cutotal
SCZ 94 0.07 3.87 0.34 0.13
Cu0.02SCZ 95 0.07 3.51 0.41 0.14
Cu0.05SCZ 105 0.08 3.90 0.42 0.20 0.61
Cu0.1SCZ 74 0.06 4.34 0.34 0.26 0.57
Tab.1  Physical information and calculated XPS results of CuxSCZ catalysts
Fig.2  XRD patterns (a) and Raman spectra (λ = 532 nm) (b) of the CuxSCZ samples.
Fig.3  HRTEM images for (a, b) SCZ, (c, d) Cu0.05SCZ, and (e, f) Cu0.1SCZ samples.
Fig.4  XPS spectra of (a) Ce 3d, (b) O 1s, and (c) Cu 2p3/2 in the CuxSCZ samples.
Fig.5  NH3-TPD (a) and H2-TPR (b) profiles of the CuxSCZ catalysts.
Fig.6  The mass signal of NO-TPD experiment: (a) NO and (b) NO2; (c) DRIFT spectra of NO + O2 on catalysts pretreated with methanol; (d) Evolution of NO2 during NO oxidation over SCZ and Cu0.05SCZ samples.
Fig.7  The influence of methanol on (a) NH3-TPD, (b) NH3-IR and NH3 oxidation results: (c) NH3 conversion and (d) evolution of NOx of SCZ and Cu0.05SCZ samples.
Fig.8  DRIFT spectra of E-R reaction pathway on the Cu0.05SCZ sample: (a) pretreated with methanol/He; (b) pretreated with He.
1 S Ali , L Chen , F Yuan , R Li , T Zhang , S U H Bakhtiar , X Leng , X Niu , Y Zhu . (2017). Synergistic effect between copper and cerium on the performance of Cux-Ce0.5−x-Zr0.5 (x = 0.1–0.5) oxides catalysts for selective catalytic reduction of NO with ammonia. Applied Catalysis B: Environmental, 210 : 223– 234
https://doi.org/10.1016/j.apcatb.2017.03.065
2 A Ambekar , A K Maurya , A Chowdhury . (2018). Droplet combustion studies of nitromethane and its blends. Experimental Thermal and Fluid Science, 93 : 431– 440
https://doi.org/10.1016/j.expthermflusci.2018.01.026
3 B Chu , Q Ma , J Liu , J Ma , P Zhang , T Chen , Q Feng , C Wang , N Yang , H Ma , J Ma , A G Russell , H He . (2020). Air pollutant correlations in China: Secondary air pollutant responses to NOx and SO2 control. Environmental Science & Technology Letters, 7( 10): 695– 700
https://doi.org/10.1021/acs.estlett.0c00403
4 L Gan , K Li , H Niu , Y Peng , J Chen , Y Huang , J Li . (2021). Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction. Frontiers of Environmental Science & Engineering, 15( 4): 70
https://doi.org/10.1007/s11783-020-1363-5
5 L Gan , W Shi , K Li , J Chen , Y Peng , J Li . (2018). Synergistic promotion effect between NOx and chlorobenzene removal on MnOx-CeO2 catalyst. ACS Applied Materials & Interfaces, 10( 36): 30426– 30432
https://doi.org/10.1021/acsami.8b10636
6 S Gao, X Chen, H Wang, J Mo, Z Wu, Y Liu, X (2013) Weng. Ceria supported on sulfated zirconia as a superacid catalyst for selective catalytic reduction of NO with NH3. Journal of Colloid and Interface Science, 394(Supplement C): 515– 521
7 G W Graham , W H Weber , C R Peters , R Usmen . (1991). Empirical method for determining CeO2-particle size in catalysts by Raman spectroscopy. Journal of Catalysis, 130( 1): 310– 313
https://doi.org/10.1016/0021-9517(91)90113-I
8 Z Hu , X Liu , D Meng , Y Guo , Y Guo , G Lu . (2016). Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catalysis, 6( 4): 2265– 2279
https://doi.org/10.1021/acscatal.5b02617
9 X Huang , D Wang , Q Yang , Y Peng , J Li . (2021). Multi-pollutant control (MPC) of NO and chlorobenzene from industrial furnaces using a vanadia-based SCR catalyst. Applied Catalysis B: Environmental, 285 : 119835
https://doi.org/10.1016/j.apcatb.2020.119835
10 L Kang , L Han , J He , H Li , T Yan , G Chen , J Zhang , L Shi , D Zhang . (2019). Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts. Environmental Science & Technology, 53( 2): 938– 945
https://doi.org/10.1021/acs.est.8b05637
11 C Li , Q Li , P Lu , H Cui , G Zeng . (2012). Characterization and performance of V2O5/CeO2 for NH3-SCR of NO at low temperatures. Frontiers of Environmental Science & Engineering, 6( 2): 156– 161
https://doi.org/10.1007/s11783-010-0295-x
12 W Li , H Liu , Y Chen . (2017). Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst. Frontiers of Environmental Science & Engineering, 11( 2): 6
https://doi.org/10.1007/s11783-017-0914-x
13 Q Liang , J Li , H He , W Liang , T Zhang , X Fan . (2017). Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts. Frontiers of Environmental Science & Engineering, 11( 4): 4
https://doi.org/10.1007/s11783-017-0926-6
14 Y Long , Y Su , Y Xue , Z Wu , X Weng . (2021). V2O5-WO3/TiO2 catalyst for efficient synergistic control of NOx and chlorinated organics: Insights into the arsenic effect. Environmental Science & Technology, 55( 13): 9317– 9325
https://doi.org/10.1021/acs.est.1c02636
15 J Lu , J Wang , Q Zou , D He , L Zhang , Z Xu , S He , Y Luo . (2019). Unravelling the nature of the active species as well as the doping effect over Cu/Ce-based catalyst for carbon monoxide preferential oxidation. ACS Catalysis, 9( 3): 2177– 2195
https://doi.org/10.1021/acscatal.8b04035
16 W Qu , X Liu , J Chen , Y Dong , X Tang , Y Chen . (2020). Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3. Nature Communications, 11( 1): 1532
https://doi.org/10.1038/s41467-020-15261-5
17 B M Reddy , P Bharali , P Saikia , A Khan , S Loridant , M Muhler , W Grünert . (2007). Hafnium doped ceria nanocomposite oxide as a novel redox additive for three-way catalysts. Journal of Physical Chemistry C, 111( 5): 1878– 1881
https://doi.org/10.1021/jp068531i
18 P Sun, H Yu, T Liu, Y Li, Z Wang, Y Xiao, X (2021) Dong. Efficiently photothermal conversion in a MnO x-based monolithic photothermocatalyst for gaseous formaldehyde elimination . Chinese Chemical Letters
19 T Taniguchi , T Watanebe , S Ichinohe , M Yoshimura , K-I Katsumata , K Okada , N Matsushita . (2010). Nanoscale heterogeneities in CeO2-ZrO2 nanocrystals highlighted by UV-resonant Raman spectroscopy. Nanoscale, 2( 8): 1426– 1428
https://doi.org/10.1039/C0NR00040J
20 B Wang , M Wang , L Han , Y Hou , W Bao , C Zhang , G Feng , L Chang , Z Huang , J Wang . (2020a). Improved activity and SO2 resistance by Sm-modulated redox of MnCeSmTiOx mesoporous amorphous oxides for Low-Temperature NH3-SCR of NO. ACS Catalysis, 10( 16): 9034– 9045
https://doi.org/10.1021/acscatal.0c02567
21 D Wang , Q Chen , X Zhang , C Gao , B Wang , X Huang , Y Peng , J Li , C Lu , J Crittenden . (2021a). Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: A critical review. Environmental Science & Technology, 55( 5): 2743– 2766
https://doi.org/10.1021/acs.est.0c07326
22 S Wang, C Fan, Z Zhao, Q Liu, G Xu, M Wu, J Chen, J (2020b) Li. A facile and controllable in situ sulfation strategy for CuCeZr catalyst for NH3-SCR . Applied Catalysis A, General, 597: 117554
23 X Wang , Y Liu , Z Wu . (2020c). Highly active NbOPO4 supported Cu-Ce catalyst for NH3-SCR reaction with superior sulfur resistance. Chemical Engineering Journal, 382 : 122941
https://doi.org/10.1016/j.cej.2019.122941
24 X Wang , Y Liu , Z Wu . (2020d). The poisoning mechanisms of different zinc species on a ceria-based NH3-SCR catalyst and the co-effects of zinc and gas-phase sulfur/chlorine species. Journal of Colloid and Interface Science, 566 : 153– 162
https://doi.org/10.1016/j.jcis.2020.01.058
25 X Wang , Y Liu , Z Wu . (2021b). Temperature-dependent influencing mechanism of carbon monoxide on the NH3-SCR process over ceria-based catalysts. ACS ES&T Engineering, 1( 7): 1131– 1139
https://doi.org/10.1021/acsestengg.1c00090
26 X Wang , Y Liu , W Yao , Z Wu . (2019). Boosting the low-temperature activity and sulfur tolerance of CeZr2Ox catalysts by antimony addition for the selective catalytic reduction of NO with ammonia. Journal of Colloid and Interface Science, 546 : 152– 162
https://doi.org/10.1016/j.jcis.2019.03.031
27 X Wang, Y Liu, Q Ying, W Yao, Z (2018) Wu. The superior performance of Nb-modified Cu-Ce-Ti mixed oxides for the selective catalytic reduction of NO with NH3 at low temperature . Applied Catalysis A, General, 562: 19− 27
28 Z Wu , B Jiang , Y Liu , H Wang , R Jin . (2007). DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environmental Science & Technology, 41( 16): 5812– 5817
https://doi.org/10.1021/es0700350
29 X Yao , L Chen , J Cao , Y Chen , M Tian , F Yang , J Sun , C Tang , L Dong . (2019). Enhancing the deNOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification. Chemical Engineering Journal, 369 : 46– 56
https://doi.org/10.1016/j.cej.2019.03.052
30 L Ye , P Lu , X Chen , P Fang , Y Peng , J Li , H Huang . (2020). The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Applied Catalysis B: Environmental, 277 : 119257
https://doi.org/10.1016/j.apcatb.2020.119257
31 Y Zeng , K G Haw , Z Wang , Y Wang , S Zhang , P Hongmanorom , Q Zhong , S Kawi . (2021). Double redox process to synthesize CuO-CeO2 catalysts with strong Cu-Ce interaction for efficient toluene oxidation. Journal of Hazardous Materials, 404 : 124088
https://doi.org/10.1016/j.jhazmat.2020.124088
32 S Zhai , Y Su , X Weng , R Li , H Wang , Z Wu . (2021). Synergistic elimination of NOx and chlorinated organics over VOx/TiO2 catalysts: A combined experimental and DFT study for exploring vanadate domain effect. Environmental Science & Technology, 55( 19): 12862– 12870
https://doi.org/10.1021/acs.est.1c02997
33 X Zhang , Y Xuan , B Wang , C Gao , S Niu , G Zhao , D Wang , J Li , C Lu , J C Crittenden . (2022). Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility. Frontiers of Environmental Science & Engineering, 16( 7): 88
https://doi.org/10.1007/s11783-021-1447-x
34 G Zhou , P Maitarad , P Wang , L Han , T Yan , H Li , J Zhang , L Shi , D Zhang . (2020). Alkali-resistant NOx reduction over SCR catalysts via boosting NH3 adsorption rates by in situ constructing the sacrificed sites. Environmental Science & Technology, 54( 20): 13314– 13321
https://doi.org/10.1021/acs.est.0c04536
35 Y Zhu , F Zhou , X Wang , Y Liu , Z Wu . (2021). Reaction behaviors of NOx and methanol simultaneous abatement over a ceria-based NH3-SCR catalyst at low-medium temperatures. Journal of Physical Chemistry C, 125( 27): 14666– 14674
https://doi.org/10.1021/acs.jpcc.1c03867
[1] FSE-22007-OF-WXQ_suppl_1 Download
[1] Chung Song Ho, Jianfei Peng, UnHyok Yun, Qijun Zhang, Hongjun Mao. Impacts of methanol fuel on vehicular emissions: A review[J]. Front. Environ. Sci. Eng., 2022, 16(9): 121-.
[2] Wei Tan, Shaohua Xie, Wenpo Shan, Zhihua Lian, Lijuan Xie, Annai Liu, Fei Gao, Lin Dong, Hong He, Fudong Liu. CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study[J]. Front. Environ. Sci. Eng., 2022, 16(5): 60-.
[3] Yang Yang, Xiuzhen Zheng, Wei Ren, Jiafang Liu, Xianliang Fu, Sugang Meng, Shifu Chen, Chun Cai. Recent advances in special morphologic photocatalysts for NOx removal[J]. Front. Environ. Sci. Eng., 2022, 16(11): 137-.
[4] Shaoyi Xu, Xiaolong Wu, Huijie Lu. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 133-.
[5] Yingwu Wang, Ping Ning, Ruheng Zhao, Kai Li, Chi Wang, Xin Sun, Xin Song, Qiang Lin. A Cu-modified active carbon fiber significantly promoted H2S and PH3 simultaneous removal at a low reaction temperature[J]. Front. Environ. Sci. Eng., 2021, 15(6): 132-.
[6] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[7] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[8] Pol Masclans Abelló, Vicente Medina Iglesias, M. Antonia de los Santos López, Jesús Álvarez-Flórez. Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 4-.
[9] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[10] Dian Ding, Jia Xing, Shuxiao Wang, Xing Chang, Jiming Hao. Impacts of emissions and meteorological changes on China’s ozone pollution in the warm seasons of 2013 and 2017[J]. Front. Environ. Sci. Eng., 2019, 13(5): 76-.
[11] Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process[J]. Front. Environ. Sci. Eng., 2017, 11(6): 11-.
[12] Quanming Liang, Jian Li, Hong He, Wenjun Liang, Tiejun Zhang, Xing Fan. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Front. Environ. Sci. Eng., 2017, 11(4): 4-.
[13] Junhua LI,Yue PENG,Huazhen CHANG,Xiang LI,John C. CRITTENDEN,Jiming HAO. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front. Environ. Sci. Eng., 2016, 10(3): 413-427.
[14] LIN Yishan, HE Yanling, MENG Zhuo, YANG Shucheng. Anaerobic treatment of wastewater containing methanol in up-flow anaerobic sludge bed (UASB) reactor[J]. Front.Environ.Sci.Eng., 2008, 2(2): 241-246.
[15] ZHOU Xuefei, REN Nanqi. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol wastewater[J]. Front.Environ.Sci.Eng., 2007, 1(1): 53-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed