Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (11) : 137    https://doi.org/10.1007/s11783-022-1573-0
REVIEW ARTICLE
Recent advances in special morphologic photocatalysts for NOx removal
Yang Yang1,2, Xiuzhen Zheng2,3, Wei Ren2, Jiafang Liu2, Xianliang Fu2(), Sugang Meng2, Shifu Chen2, Chun Cai1()
1. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. Key Laboratory of Green and Precise Synthetic Chemistry and Applications, College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
3. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200433, China
 Download: PDF(5192 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Systematic information of recent progress in photocatalytic NO x removal is provided.

● The photocatalysts with special morphologies are reviewed and discussed.

● The morphology and photocatalytic NO x removal performance is related.

The significant increase of NOx concentration causes severe damages to environment and human health. Light-driven photocatalytic technique affords an ideal solution for the removal of NOx at ambient conditions. To enhance the performance of NOx removal, 1D, 2D and 3D photocatalysts have been constructed as the light absorption and the separation of charge carriers can be manipulated through controlling the morphology of the photocatalyst. Related works mainly focused on the construction and modification of special morphologic photocatalyst, including element doping, heterostructure constructing, crystal facet exposing, defect sites introducing and so on. Moreover, the excellent performance of the photocatalytic NOx removal creates great awareness of the application, which has promising practical applications in NOx removal by paint (removing NOx indoor and outdoor) and pavement (degrading vehicle exhausts). For these considerations, recent advances in special morphologic photocatalysts for NOx removal was summarized and commented in this review. The purpose is to provide insights into understanding the relationship between morphology and photocatalytic performance, meanwhile, to promote the application of photocatalytic technology in NOx degradation.

Keywords NOx removal      Photocatalyst      Graphene      C3N4      Bi-based compounds.     
Corresponding Author(s): Xianliang Fu,Chun Cai   
Issue Date: 29 April 2022
 Cite this article:   
Yang Yang,Xiuzhen Zheng,Wei Ren, et al. Recent advances in special morphologic photocatalysts for NOx removal[J]. Front. Environ. Sci. Eng., 2022, 16(11): 137.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1573-0
https://academic.hep.com.cn/fese/EN/Y2022/V16/I11/137
Fig.1  1D TiO2 material on photocatalytic NO degradation: nanorod (a, (Habran et al., 2018)), nanotube (b, (Martin et al., 2017), c, (Li et al., 2015)), nanoparticles on C nanotubes (d, (Xiao et al., 2019)) and coral (e, (Ou et al., 2021)). The figures are copyrighted from Taylor & Francis Publishing Group (a), Elsevier Publishing Group (b), Royal Society of Chemistry Publishing Group (c) and American Chemical Society Publishing Group (d, e).
Fig.2  1D non-TiO2 metal oxide materials on photocatalytic NO degradation: ZnO nanorod (a, (Wang et al., 2019a)), Bi2O3 microrods (b, (Hoang et al., 2020)), mulberry-like Bi2O3 (c, (Huang et al., 2021)), ZnWO4 nanorod (d, (Chang et al., 2019)) and Bi2O2CO3/MoS2 on carbon nanofibers (e, (Hu et al., 2017)). The figures are copyrighted from Elsevier Publishing Group (a, b and e), Wiley Publishing Group (c) and American Chemical Society Publishing Group (d).
Fig.3  2D GO-based materials loaded with different shapes on photocatalytic NO degradation: nanoparticles (a, (Feng et al., 2020)), cubes (b, (Hu et al., 2018)) and rhombic dodecahedron (c, (Xiao et al., 2018)). The figures are copyrighted from Royal Society of Chemistry Publishing Group (a) and Elsevier Publishing Group (b, c).
Fig.4  2D C3N4 (a, (Han et al., 2019)) and its loaded materials with different shapes on photocatalytic NO degradation: nanoparticles (b, (Li et al., 2020a)), plates (c, (Wang et al., 2016)), hexagonal nanoplates (d, (Geng et al., 2021b)), hollow cubes (e, (Wang et al., 2021a)), octahedra (f, (Ren et al., 2021)), nanospheres (g, (Dong et al., 2015)) and spheres (h, (Wang et al., 2021b)). The figures are copyrighted from Elsevier Publishing Group (a, b, c, d, e, f and h) and American Chemical Society Publishing Group (g).
Fig.5  2D Bi-based materials with plate shapes on photocatalytic NO degradation: BiOCl (a, (Xie et al., 2020), b, (Li et al., 2019a)), Bi24O31Br10/Bi3O4Br (c, (Li et al., 2020b) ) and Bi/Bi2O2SiO3 (d, (Li et al., 2019d)). The figures are all copyrighted from Elsevier Publishing Group.
Fig.6  3D metal oxides with different shapes on photocatalytic NO degradation, such as microspheres (a, (Hojamberdiev et al., 2018), b, (Chen et al., 2018), c, (Sofianou et al., 2012) and d, (Rao et al., 2020)), flower (e, (Kowsari and Bazri, 2014)), nanorod bundle (f, (Zhang et al., 2014)), twin-brush (g, (Wu et al., 2021)) and hexagon (h, (Kowsari and Abdpour, 2017)), and C3N4 materials with flower structure (i, (Duan et al., 2019)). The figures are copyrighted from Springer Publishing Group (a, c) Elsevier Publishing Group (b, e, f, g, h and i) and Wiley Publishing Group (d).
Fig.7  3D Bi-based materials with different morphologies on photocatalytic NO degradation: flower (a, (Rao et al., 2019b), b, (Yuan et al., 2020)), hierarchical structure (c, (Lu et al., 2019a), d, (Li et al., 2010)), sphere (e, (Zha et al., 2021)), boat (f, (Ai and Lee, 2013)), eight-pot shape (g, (Ou et al., 2015)) and decagon shape (h, (Ou et al., 2018)). The figures are copyrighted from American Chemical Society Publishing Group (a, d), Elsevier Publishing Group (b, e, f and h), Springer Publishing Group (c) and Royal Society of Chemistry Publishing Group (g).
Photocatalysts Light source Pollutants (initial concentration, ×10−3 mg/L) Products Removalefficiency Ref.
TiO2 nanorods UV NO (134) 100% Habran et al., 2018
TiO2 nanotubes UV NOx (1.34) NO3 60% Martin et al., 2017
Cu, Ce and B/TiO2 nanotubes UV NO (201) HNO3 80% Li et al., 2015
Mn-graphene/TiO2 nanowires Fluorescent lamp NOx (1.34) NO2, NO3 25.4% Lee et al., 2020
TiO2/C nanotubes UV NO (0.74 ) NO3 31.5% Xiao et al., 2019
Ag/TiO2 on C fibers UV NO (2.68) NO2, nitric forms 95% Kusiak-Nejman et al., 2020
TiO2/polymeric nanofibers UV NO (1.34) NO2, HNO3 16.2% Szatmary et al., 2014
TiO2 nanorods UV NO (0.67) NO3 58% Dai et al., 2020
TiO2-δ/CNTs/N-CQDs corals Visible light NO (0.58) NO3 60.2% Ou et al., 2021
SnO2/TiO2 nanotubes Visible light NO (0.60) NO3 59.49% Huy et al., 2019
WO3/TiO2 nanorods/PDMS Visible light NO (26.8) 61.41% Liu et al., 2021
g-C3N4/TiO2 nanotubes Visible light NO (1.34) NO2, NO3 19.62% Hossain et al., 2020
g-C3N4/Zn2SnO4N/ZnO nanorods Visible light NO (0.80) 45.51% Wang et al., 2019a
C3N4/Bi2O3 microrods Visible light NO (134) NO2, NO3 39.1% Hoang et al., 2020
Mulberry-like BiVO4/Bi2O3 Visible light NO (0.80) 58.7% Huang et al., 2021
Pd/ZnWO4 nanorods Simulated sunlight NO (0.58) NO2/NO3 52.69% Chang et al., 2019
Au/BiOCl/BiOI rods visible light NO (0.74) NO3/NO2 65.4% Wang et al., 2021a
Ag/Ag2O/SrSn(OH)6 nanowires Visible light NO (0.74) NO3 45.1% Yang et al., 2021a
Bi2O2CO3/MoS2 on carbon nanofibers Visible light NO (0.8) NO3 68% Hu et al., 2017
Bi/CdS nanorods Visible light NO (1.34 ) HNO3 58% Li et al., 2021
Ag/Bi2S3 nanorods Solar light NO (0.67) NO3 31.12% Pham et al., 2021a
Tab.1  Summary of 1D photocatalysts for the NOx removal
Photocatalyst Light source Pollutants (initial concentration, ×10−3 mg/L ) Products Removalefficiency Ref.
MgAl–CO3 layered double hydroxides UV–Vis light NO (0.67) NO3 60% Nehdi et al., 2022
Nb2O5/Nb2C MXene Simulated sunlight NO (0.67) HNO3 80% Wang et al., 2021d
N, Bi/graphene nanosheets UV NO (0.67) NO3 49.5% Feng et al., 2020
g-C3N4/GO-InVO4 layers Visible light NO (0.80) NO3 65% Hu et al., 2018
ZnCo2O4/rGO nanosheets Visible light NO (0.67) NO3 83.8% Xiao et al., 2018
B/C3N4 nanosheets Visible light NO (0.80) NO3 54% Xia et al., 2022
FAPbBr3/g-C3N4 nanosheets Visible light NO (0.80) NO3 58% Xie et al., 2022
C3N4 lamellar structure Visible light NO (2.68) HNO2/HNO3 33% Gu et al., 2020
C3N4 network structure Visible light NO (0.24) NO3 57.1% Duan et al., 2021
C3N4 nanosheets Visible light NO (20.1) NO2, NO2, and NO3 66.7% Han et al., 2019
Pd/g-C3N4 nanosheets Visible light NO (0.67) NO3 44.9% Li et al., 2020a
Bi2O2CO3/g-C3N4 layers Visible light NO (0.54) NO3 34.8% Wang et al., 2016
Fe2O3/g-C3N4 nanosheets Visible light NO (0.80) NO3 60.8% Geng et al., 2021b
NiCoOx/g-C3N4 nanosheets Visible light NO (0.80) NO3 59.1% Wang et al., 2021a
Sb2WO6/g-C3N4 nanoflakes Visible light NO (0.80) NO2, NO3 68% Ren et al., 2021
Bi/g-C3N4 nanosheets Visible light NO (0.80) HNO2, HNO3 59.7% Dong et al., 2015
W18O49/g-C3N4−x nanosheets Simulated sunlight NO (0.80) 83.55% Wang et al., 2021b
BiOCl nanosheets Simulated sunlight NO (0.54) 23.7% Xie et al., 2020
BiOCl nanosheets Uv360 NO (0.67) NO2, NO3 41% Li et al., 2019a
Ba/BiOBr nanosheets Visible light NO (0.67) NO3 53% Geng et al., 2021a
(Ti, C)-BiOBr/Ti3C2Tx MXene layers Simulated sunlight NO (1.34) HNO2, NO3 61% Hermawan et al., 2021
BiOI/BN nanosheets Visible light NO (0.67x10−9) NO2 44.2% Zheng et al., 2021
Bi4O5Br2 and Bi12O17Br2 nanosheets Visible light NO (0.80) NO3 41.8% Zhang et al., 2017
Ag/AgCl/Bi12O17Cl2 nanosheets Visible light NO NO2 25% Zhu et al., 2021
BiOCl/ Bi12O17Cl2 nanoplates Visible light NO NO3 37.2% Zhang et al., 2018a
MoS2/BiOCl/Bi12O17Cl2 nanosheets Visible light NO (0.67) NO3 51.1% Zhang et al., 2019b
g-C3N4/BiOCl/Bi12O17Cl2 nanosheets Visible light NO (0.67) NO3 46.8% Zhang and Liang, 2019
Ag/AgCl/BiOCl/Bi12O17Cl2 nanosheets Visible light NO (0.67) NO3 49.5% Zhang et al., 2018b
Bi3O4Br/Bi24O31Br10 ribbon Visible light NO (0.54) 32.5% Li et al., 2020b
Bi/Bi2O2−xCO3 nanosheets Visible light NO (67) NO3 50.5% Lu et al., 2019b
graphene/N-(BiO)2CO3 nanosheets Visible light NO (0.74) NO3 53% Liu et al., 2020a
CdSe/N-(BiO)2CO3 nanosheets Visible light NO (0.74) NO3 35% Liu et al., 2019
ZnFe2O4/Bi2O2CO3 nanoplates Visible light NO (0.54) NO3 35% Huang et al., 2018
Cl/BiWO4 nanosheets Visible light NO (0.80) NO3 64% Yang et al., 2021b
Black P/BiWO4 nanosheets Visible light NO (0.80) NO3 67% Hu et al., 2019
Bi/Bi2MoO6 nanoplates Visible light NO (0.80) NO3 41.4% Ding et al., 2016
Br/Bi2MoO6 microplates Visible light NO (0.83) NO3 62.9% Wang et al., 2020
Bi/Bi2GeO5 nanosheets Visible light NO (0.60) NO2, NO3 56.2% Li et al., 2019c
Bi@Bi2O2SiO3 nanosheets Visible light NO (0.60) NO2, NO3 50.2% Li et al., 2019d
I/BiOCOOH nanoplates Visible light NO (0.74) 49.7% Feng et al., 2018
Tab.2  Summary of 2D photocatalysts for the NOx removal
Photocatalyst Light source Pollutants (initial concentration, ×10−3 mg/L) Products Removal efficiency Ref.
MoS2/Bi2O3 microspheres Visible light NO (0.58) NO2, NO2 or NO3 41.4% Hojamberdiev et al., 2018
Pd/PdO/Bi2O3 microspheres Visible light NO (0.58) NO2, NO3 47.6% Rao et al., 2020
ZnO microspheres UV365 NO (0.54) NO3 77.3% Chen et al., 2018
TiO2 nanospheres UV NO (1.34) NO2, NO3 7% Sofianou et al., 2012
ZnSn(OH)6 cubes Solar light NO (0.67) NO2, NO3 74.5% Pham et al., 2021b
Mg/ZnO rosette UV SO2, NOx, and CO (1.34) HNO2/HNO3 23% Kowsari and Bazri, 2014
Au/TiO2 nanorod bundles Visible light NO (0.54) NO2, NO3 31% Zhang et al., 2014
Ag/ZnO twin-brush Simulated sunlight NO (0.67) NO3 71% Wu et al., 2021
CNT/TiO2 decahedron UV365 NO (0.67) NO2, NO3 76.8% Xiao et al., 2016
ZnO hexagon UV NO (2.68) HNO2/HNO3 56% Kowsari and Abdpour, 2017
C3N4 flower Visible light NO (0.80) 59.7% Duan et al., 2019
BiOCl/g-C3N4 spheres Visible light NO (0.80) NO3 56.1% Wang et al., 2022
Bi/C3N4 pomegranate Visible light NO (0.80) 70.4% Li et al., 2017
g-C3N4@SiO2 microsphere Visible light NO (0.80) NO2, NO3 29.6% Lin et al., 2017
C3N4/TiO2 foam Visible light NO (0.74) NO2, NO3 65% Xiong et al., 2021
Mn3O4/BiOCl microflowers Simulated solar light NO (0.13) HNO2, NO3 75% Shen et al., 2021
BiOBr microspheres UV-visible light NO (1.34) NO3 95% Montoya-Zamora et al., 2020
Zn/BiOI microspheres Visible light NO (0.58) NO3 53.6% Rao et al., 2019
Bi4O5Br2-GO clusters Visible light NO (0.74) NO3 53% Chang et al., 2021
BiOBr/Bi12O17Br2 flowers Simulated solar light NO (0.54) 57.3% Li et al., 2019b
Au, La/Bi5O7I microspheres Visible light NO (0.54) NO2, NO3 54.5% Zhang et al., 2019a
La/Bi2O2CO3 microspheres Visible light NO (0.67) NO2/NO3 49.8% Yuan et al., 2020
(BiO)2CO3/BiO2−x/graphene microspheres Simulated solar light NO (0.58) NO3 61% Jia et al., 2019
I/Bi2WO6 microflowers Simulated solar light NO (0.58) NO3 50% Lu et al., 2019a
Bi2WO6 rosette Visible light NO (670) NO3 54% Wang et al., 2019b
Bi2WO6 microsphere Visible light NO (0.54) NO3 52% Li et al., 2010
Bi2WO6/NH2-UiO-66 octahedral cubes Visible light NO (0.67) NO3/NO2 79% Liu et al., 2020b
BiVO4/Bi2S3 spheres Visible light NO (402) NO3 37.7% Zha et al., 2021
BiVO4 boats Visible light NO (0.54) HNO2, HNO3 35.4% Ai and Lee, 2013
BiVO4 flowers Visible light NO (536) NO3 48.5% Ou et al., 2015
g-C3N4@Ag/BiVO4 decagon Visible light NO (536) NO3 83% Ou et al., 2018
CO3-Bi2MoO6 micro/nanospheres Visible light NO (0.74) NO3 34% Huo et al., 2019
Bi2Sn2O7−x hollow nanocubes Visible light NO (0.54) NO2, NO3 32% Lu et al., 2021
Bi/BiPO4 nanospheres Visible light NO (0.54) NO3 32.8% Chen et al., 2020
Tab.3  Summary of 3D photocatalysts for the NOx removal
1 Z H Ai, S Lee. (2013). Morphology-dependent photocatalytic removal of NO by hierarchical BiVO4 microboats and microspheres under visible light. Applied Surface Science, 280 : 354–359
https://doi.org/10.1016/j.apsusc.2013.04.160
2 F Chang, C Yang, J Y Wang, B Lei, S J Li, H Kim. (2021). Enhanced photocatalytic conversion of NOx with satisfactory selectivity of 3D-2D Bi4O5Br2-GO hierarchical structures via a facile microwave-assisted preparation. Separation and Purification Technology, 266 : 118237
https://doi.org/10.1016/j.seppur.2020.118237
3 L Chang, G Zhu, Q U Hassan, B Cao, S Li, Y Jia, J Gao, F Zhang, Q Wang. (2019). Synergetic effects of Pd0 metal nanoparticles and Pd2+ ions on enhanced photocatalytic activity of ZnWO4 nanorods for nitric oxide removal. Langmuir, 35( 35): 11265–11274
https://doi.org/10.1021/acs.langmuir.9b01323
4 M J Chen, X W Li, Y Huang, J Yao, Y Li, S C Lee, W K Ho, T T Huang, K H Chen. (2020). Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal. Applied Surface Science, 513 : 145775
https://doi.org/10.1016/j.apsusc.2020.145775
5 X L Chen, H Q Zhang, D Q Zhang, Y C Miao, G S Li. (2018). Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation. Applied Surface Science, 435 : 468–475
https://doi.org/10.1016/j.apsusc.2017.11.045
6 W Dai, Y Tao, H Zou, S Xiao, G Li, D Zhang, H Li. (2020). Gas-phase photoelectrocatalytic oxidation of NO via TiO2 nanorod array/FTO photoanodes. Environmental Science & Technology, 54( 9): 5902–5912
https://doi.org/10.1021/acs.est.9b07757
7 X Ding, W K Ho, J Shang, L Z Zhang. (2016). Self doping promoted photocatalytic removal of no under visible light with Bi2MoO6: Indispensable role of superoxide ions. Applied Catalysis B: Environmental, 182 : 316–325
https://doi.org/10.1016/j.apcatb.2015.09.046
8 F Dong, Z Zhao, Y Sun, Y Zhang, S Yan, Z Wu. (2015). An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environmental Science & Technology, 49( 20): 12432–12440
https://doi.org/10.1021/acs.est.5b03758
9 Y Duan, Y Wang, L Gan, J Meng, Y Feng, K Wang, K Zhou, C Wang, X Han, X Zhou. (2021). Amorphous carbon nitride with three coordinate nitrogen (N3C) vacancies for exceptional NOx abatement in visible light. Advanced Energy Materials, 11( 19): 2004001
https://doi.org/10.1002/aenm.202004001
10 Y Y Duan, X F Li, K L Lv, L Zhao, Y Liu. (2019). Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement. Applied Surface Science, 492 : 166–176
https://doi.org/10.1016/j.apsusc.2019.06.125
11 X Feng, X W Li, W Cui, F Dong, T R Zhang. (2018). An ion-exchange strategy for I-doped BiOCOOH nanoplates with enhanced visible light photocatalytic NOx removal. Pure and Applied Chemistry, 90( 2): 353–361
https://doi.org/10.1515/pac-2017-0509
12 Z J Feng, D R Lian, X Wu, Y Liu, W Jia, X Y Yuan. (2020). The synergy of N-doped and SPR-promoted photocatalytic removal of NO with graphene/Bi nanocomposites. RSC Advances, 10( 5): 2734–2739
https://doi.org/10.1039/C9RA10001F
13 Q Geng, H T Xie, W Cui, J P Sheng, X Tong, Y J Sun, J Y Li, Z M Wang, F Dong. (2021a). Optimizing the electronic structure of BiOBr Nanosheets via Combined Ba doping and oxygen vacancies for promoted photocatalysis. Journal of Physical Chemistry C, 125( 16): 8597–8605
https://doi.org/10.1021/acs.jpcc.1c00772
14 Y Geng, D Chen, N Li, Q Xu, H Li, J He, J Lu. (2021b). Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 280 : 119409
https://doi.org/10.1016/j.apcatb.2020.119409
15 Z Y Gu, Z T Cui, Z J Wang, K S Qin, Y Asakura, T Hasegawa, S Tsukuda, K Hongo, R Maezono, S Yin. (2020). Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism. Applied Catalysis B: Environmental, 279 : 119376
https://doi.org/10.1016/j.apcatb.2020.119376
16 M Habran, K Krambrock, da Costa M E H Maia, E Jr Morgado, B A Marinkovic. (2018). TiO2 anatase nanorods with non-equilibrium crystallographic {001} facets and their coatings exhibiting high photo-oxidation of NO gas. Environmental Technology, 39( 2): 231–239
https://doi.org/10.1080/09593330.2017.1297852
17 D Y Han, J Liu, H Cai, X Zhou, L R Kong, J W Wang, H F Shi, Q Guo, X X Fan. (2019). High-yield and low-cost method to synthesize large-area porous g-C3N4 nanosheets with improved photocatalytic activity for gaseous nitric oxide and 2-propanol photodegradation. Applied Surface Science, 464 : 577–585
https://doi.org/10.1016/j.apsusc.2018.09.108
18 J Hao, H Tian, Y Lu. (2002). Emission inventories of NOx from commercial energy consumption in China, 1995-1998. Environmental Science & Technology, 36( 4): 552–560
https://doi.org/10.1021/es015601k
19 A Hermawan, T Hasegawa, Y Asakura, S Yin. (2021). Enhanced visible-light-induced photocatalytic NOx degradation over (Ti, C)-BiOBr/Ti3C2Tx MXene nanocomposites: Role of Ti and C doping. Separation and Purification Technology, 270 : 118815
https://doi.org/10.1016/j.seppur.2021.118815
20 T V T Hoang, T C Minh, V P Van. (2020). Enhancing photocatalysis of NO gas degradation over g-C3N4 modified α-Bi2O3 microrods composites under visible light. Materials Letters, 281 : 128637
https://doi.org/10.1016/j.matlet.2020.128637
21 M Hojamberdiev, G Zhu, H Lu, M Kumar, M Wang, J Gao. (2018). MoS2 quantum dots-modified porous β-Bi2O3 microspheres with enhanced visible-light-induced photocatalytic activity for Bisphenol A degradation and NO removal. Journal of Materials Science, 30( 3): 2610–2621
22 S M Hossain, H Park, H J Kang, J S Mun, L Tijing, I Rhee, J H Kim, Y S Jun, H K Shon. (2020). Modified hydrothermal route for synthesis of photoactive anatase TiO2/g-CN nanotubes from sludge generated TiO2. Catalysts, 10( 11): 1350
https://doi.org/10.3390/catal10111350
23 J Hu, D Chen, Z Mo, N Li, Q Xu, H Li, J He, H Xu, J Lu. (2019). Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2 WO6 nanosheets with enhanced photocatalytic activities. Angewandte Chemie (International ed. in English), 58( 7): 2073–2077
https://doi.org/10.1002/anie.201813417
24 J D Hu, D Y Chen, N J Li, Q F Xu, H Li, J H He, J M Lu. (2017). In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation. Applied Catalysis B: Environmental, 217 : 224–231
https://doi.org/10.1016/j.apcatb.2017.05.088
25 J D Hu, D Y Chen, N J Li, Q F Xu, H Li, J H He, J M Lu. (2018). Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Applied Catalysis B: Environmental, 236 : 45–52
https://doi.org/10.1016/j.apcatb.2018.04.080
26 L Huang, D F Hou, S L Gan, X Q Qiao, D S Li. (2021). Multifunctional mulberry-like BiVO4-Bi2O3 p-n heterostructures with enhanced both photocatalytic reduction and oxidation activities. ChemCatChem, 13( 14): 3357–3367
https://doi.org/10.1002/cctc.202100422
27 Y Huang, D D Zhu, Q Zhang, Y F Zhang, J J Cao, Z X Shen, W K Ho, S C Lee. (2018). Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal. Applied Catalysis B: Environmental, 234 : 70–78
https://doi.org/10.1016/j.apcatb.2018.04.039
28 W Huo, W Xu, T Cao, Z Guo, X Liu, G Ge, N Li, T Lan, H C Yao, Y Zhang, F Dong. (2019). Carbonate doped Bi2MoO6 hierarchical nanostructure with enhanced transformation of active radicals for efficient photocatalytic removal of NO. Journal of Colloid and Interface Science, 557 : 816–824
https://doi.org/10.1016/j.jcis.2019.09.089
29 T H Huy, D P Bui, F Kang, Y F Wang, S H Liu, C M Thi, S J You, G M Chang, V V Pham. (2019). SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere, 215 : 323–332
https://doi.org/10.1016/j.chemosphere.2018.10.033
30 Y Jia, S Li, J Gao, G Zhu, F Zhang, X Shi, Y Huang, C Liu. (2019). Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Applied Catalysis B: Environmental, 240 : 241–252
https://doi.org/10.1016/j.apcatb.2018.09.005
31 E Kowsari, S Abdpour. (2017). In-situ functionalization of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a photocatalyst for elimination of SO2, NOx, and CO. Journal of Solid State Chemistry, 256 : 141–150
https://doi.org/10.1016/j.jssc.2017.08.038
32 E Kowsari, B Bazri. (2014). Synthesis of rose-like ZnO hierarchical nanostructures in the presence of ionic liquid/Mg2+ for air purification and their shape-dependent photodegradation of SO2, NOx, and CO. Applied Catalysis A-General, 475 : 325–334
https://doi.org/10.1016/j.apcata.2014.01.046
33 E Kusiak-Nejman, A Czyżewski, A Wanag, M Dubicki, M Sadłowski, R J Wróbel, A W Morawski. (2020). Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths. Journal of Environmental Management, 262 : 110343
https://doi.org/10.1016/j.jenvman.2020.110343
34 J C LeeA I GopalanG SaianandK P LeeW J Kim (2020). Manganese and graphene included titanium dioxide composite nanowires: Fabrication, characterization and enhanced photocatalytic activities. Nanomaterials (Basel, Switzerland), 10(3): 456
pmid: 32143287
35 G Li, D Zhang, J C Yu, M K Leung. (2010). An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide. Environmental Science & Technology, 44( 11): 4276–4281
https://doi.org/10.1021/es100084a
36 J Y Li, R M Chen, W L Cen, P Yan, K L Li, P Wang, S Shu, Y H Chu, F Dong. (2019a). Quantifying the activation energies of ROS-induced NOx conversion: Suppressed toxic intermediates generation and clarified reaction mechanism. Chemical Engineering Journal, 375 : 122026
https://doi.org/10.1016/j.cej.2019.122026
37 K Li, Y He, P Chen, H Wang, J Sheng, W Cui, G Leng, Y Chu, Z Wang, F Dong. (2020a). Theoretical design and experimental investigation on highly selective Pd particles decorated C3N4 for safe photocatalytic NO purification. Journal of Hazardous Materials, 392 : 122357
https://doi.org/10.1016/j.jhazmat.2020.122357
38 R Li, J Q Feng, X C Zhang, F X Xie, J X Liu, C M Zhang, Y W Wang, X P Yue, C M Fan. (2020b). In situ reorganization of Bi3O4Br nanosheet on the Bi24O3Br10 ribbon structure for superior visible-light photocatalytic capability. Separation and Purification Technology, 247 : 117007
https://doi.org/10.1016/j.seppur.2020.117007
39 R Li, X Ou, L Zhang, Z Qi, X Wu, C Lu, J Fan, K Lv. (2021). Photocatalytic oxidation of NO on reduction type semiconductor photocatalysts: Effect of metallic Bi on CdS nanorods. Chemical Communications, 57( 78): 10067–10070
https://doi.org/10.1039/D1CC03516A
40 R Li, F Xie, J Liu, C Zhang, X Zhang, C Fan. (2019b). Room-temperature hydrolysis fabrication of BiOBr/Bi12O17Br2 Z-Scheme photocatalyst with enhanced resorcinol degradation and NO removal activity. Chemosphere, 235 : 767–775
https://doi.org/10.1016/j.chemosphere.2019.06.231
41 R M Li, G J Dong, G M Chen. (2015). Synthesis, characterization and performance of ternary doped Cu-Ce-B/TiO2 nanotubes on the photocatalytic removal of nitrogen oxides. New Journal of Chemistry, 39( 9): 6854–6863
https://doi.org/10.1039/C5NJ00986C
42 X W Li, W D Zhang, W Cui, J Y Li, Y J Sun, G M Jiang, H W Huang, Y X Zhang, F Dong. (2019c). Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation. Chemical Engineering Journal, 370 : 1366–1375
https://doi.org/10.1016/j.cej.2019.04.003
43 X W Li, W D Zhang, J Y Li, G M Jiang, Y Zhou, S Lee, F Dong. (2019d). Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. Applied Catalysis B: Environmental, 241 : 187–195
https://doi.org/10.1016/j.apcatb.2018.09.032
44 Y H Li, K L Lv, W K Ho, Z W Zhao, Y Huang. (2017). Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures. Chinese Journal of Catalysis, 38( 2): 321–329
https://doi.org/10.1016/S1872-2067(16)62573-1
45 B Lin, S Chen, F Dong, G Yang. (2017). A ball-in-ball g-C3N4@SiO2 nano-photoreactor for highly efficient H2 generation and NO removal. Nanoscale, 9( 16): 5273–5279
https://doi.org/10.1039/C7NR00501F
46 G Y Liu, H Y Xia, Y H Niu, X Zhao, G T Zhang, L F Song, H X Chen. (2021). Fabrication of self-cleaning photocatalytic durable building coating based on WO3-TNs/PDMS and NO degradation performance. Chemical Engineering Journal, 409 : 128187
https://doi.org/10.1016/j.cej.2020.128187
47 Y Liu, S Yu, K W Zheng, W W Chen, X A Dong, F Dong, Y Zhou. (2019). NO photo-oxidation and in-situ DRIFTS studies on N-doped Bi2O2CO3/CdSe quantum dot composite. Journal of Inorganic Materials, 34( 4): 425–432
https://doi.org/10.15541/jim20180299
48 Y Liu, Y Zhou, S Yu, Z H Xie, Y Chen, K W Zheng, S Mossin, W H Lin, J Meng, T Pullerits, K B Zheng. (2020a). Defect state assisted Z-scheme charge recombination in Bi2O2CO3/graphene quantum dot composites for photocatalytic oxidation of NO. ACS Applied Nano Materials, 3( 1): 772–781
https://doi.org/10.1021/acsanm.9b02276
49 Y Q Liu, Y Zhou, Q J Tang, Q Li, S Chen, Z X Sun, H Q Wang. (2020b). A direct Z-scheme Bi2WO6/NH2-UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal. RSC Advances, 10( 3): 1757–1768
https://doi.org/10.1039/C9RA09270F
50 X Lu, G Q Zhu, R X Zhang, S P Li, L K Pan, J L Nie, F Rao. (2019a). I-doped Bi2WO6 microflowers enhanced visible light photocatalytic activity for organic pollution degradation and NO removal. Journal of Materials Science Materials in Electronics, 30( 19): 17787–17797
https://doi.org/10.1007/s10854-019-02130-1
51 Y F Lu, M J Chen, T T Huang, Y Huang, J J Cao, H W Li, K Ho, S C Lee. (2021). Oxygen vacancy-dependent photocatalytic activity of well-defined Bi2Sn2O7−x hollow nanocubes for NOx removal. Environmental Science. Nano, 8( 7): 1927–1933
https://doi.org/10.1039/D1EN00260K
52 Y F Lu, Y Huang, Y F Zhang, T T Huang, H W Li, J J Cao, W K Ho. (2019b). Effects of H2O2 generation over visible light-responsive Bi/Bi2O2−xCO3 nanosheets on their photocatalytic NOx removal performance. Chemical Engineering Journal, 363 : 374–382
https://doi.org/10.1016/j.cej.2019.01.172
53 J M Montoya-Zamora, La Cruz A Martinez-De, E Lopez-Cuellar, González F A Pérez. (2020). BiOBr photocatalyst with high activity for NOx elimination. Advanced Powder Technology, 31( 8): 3618–3627
https://doi.org/10.1016/j.apt.2020.07.009
54 M Martin, S Leonid, R Tomáš, Š Jan, K Jaroslav, K Mariana, J Michaela, P František, P Gustav. (2017). Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOx removal and water cleaning. Catalysis Today, 287 : 59–64
https://doi.org/10.1016/j.cattod.2016.10.011
55 A NehdiN Frini-SrasraMiguel G deI PavlovicL SánchezJ Fragoso(2022). Use of LDH- chromate adsorption co-product as an air purification photocatalyst. Chemosphere, 286(Pt 2): 131812
pmid: 34375829
56 A Nikokavoura, C Trapalis. (2018). Graphene and g-C3N4 based photocatalysts for NOx removal: A review. Applied Surface Science, 430 : 18–52
https://doi.org/10.1016/j.apsusc.2017.08.192
57 M Ou, H Nie, Q Zhong, S Zhang, L Zhong. (2015). Controllable synthesis of 3D BiVO4 superstructures with visible-light-induced photocatalytic oxidation of NO in the gas phase and mechanistic analysis. Physical chemistry chemical physics: PCCP, 17( 43): 28809–28817
https://doi.org/10.1039/C5CP04730G
58 M Ou, S P Wan, Q Zhong, S L Zhang, Y Song, L N Guo, W Cai, Y L Xu. (2018). Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Applied Catalysis B: Environmental, 221 : 97–107
https://doi.org/10.1016/j.apcatb.2017.09.005
59 Y Ou, G Zhu, F Rao, J Gao, J Chang, X Xie, W Zhang, Y Huang, M Hojamberdiev. (2021). Coral-shaped TiO2−δ decorated with carbon quantum dots and carbon nanotubes for NO removal. ACS Applied Nano Materials, 4( 7): 7330–7342
https://doi.org/10.1021/acsanm.1c01306
60 M T Pham, A Hussain, D P Bui, T M T Nguyen, S J You, Y F Wang. (2021a). Surface plasmon resonance enhanced photocatalysis of Ag nanoparticles-decorated Bi2S3 nanorods for NO degradation. Environmental Technology & Innovation, 23 : 101755
https://doi.org/10.1016/j.eti.2021.101755
61 M T Pham, H H Tran, T M T Nguyen, D P Bui, Y Huang, J Cao, S J You, P Van Viet, V H Nam, Y F Wang. (2021b). Revealing DeNOx and DeVOC reactions via the study of the surface and bandstructure of ZnSn(OH)6 photocatalysts. Acta Materialia, 215 : 117068
https://doi.org/10.1016/j.actamat.2021.117068
62 P Pichat, J M Herrmann, H Courbon, J Disdier, M N Mozzanega. (1982). Photocatalytic oxidation of various compounds over TiO2 and other semiconductor oxides; Mechanistic considerations. Canadian Journal of Chemical Engineering, 60( 1): 27–32
https://doi.org/10.1002/cjce.5450600106
63 F RaoG Zhu M WangS M ZubairuJ PengJ GaoM Hojamberdiev(2020). Constructing the Pd/PdO/β-Bi2O3 microspheres with enhanced photocatalytic activity for Bisphenol A degradation and NO removal. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 95(3): 862−874
64 F Rao, G Q Zhu, M Hojamberdiev, W B Zhang, S P Li, J Z Gao, F C Zhang, Y H Huang, Y Huang. (2019). Uniform Zn2+-doped BiOI microspheres assembled by ultrathin nanosheets with tunable oxygen vacancies for super-stable removal of NO. Journal of Physical Chemistry C, 123( 26): 16268–16280
https://doi.org/10.1021/acs.jpcc.9b03961
65 Y Y Ren, Y Li, X Y Wu, J L Wang, G K Zhang. (2021). S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chinese Journal of Catalysis, 42( 1): 69–77
https://doi.org/10.1016/S1872-2067(20)63631-2
66 T Shen, X K Shi, J X Guo, J Li, S D Yuan. (2021). Photocatalytic removal of NO by light-driven Mn3O4/BiOCl heterojunction photocatalyst: Optimization and mechanism. Chemical Engineering Journal, 408 : 128014
https://doi.org/10.1016/j.cej.2020.128014
67 M V Sofianou, C Trapalis, V Psycharis, N Boukos, T Vaimakis, J Yu, W Wang. (2012). Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation. Environmental Science and Pollution Research International, 19( 9): 3719–3726
https://doi.org/10.1007/s11356-012-0747-x
68 L Szatmáry, J Šubrt, V Kalousek, J Mosinger, K Lang. (2014). Low-temperature deposition of anatase on nanofiber materials for photocatalytic NOx removal. Catalysis Today, 230 : 74–78
https://doi.org/10.1016/j.cattod.2013.09.023
69 B B Wang, D Y Chen, N J Li, Q F Xu, H Li, J H He, J M Lu. (2021a). Enhanced photocatalytic oxidation of nitric oxide to MOF-derived hollow bimetallic oxide microcubes supported on g-C3N4 nanosheets via p-n heterojunction. Industrial & Engineering Chemistry Research, 60( 7): 2921–2930
https://doi.org/10.1021/acs.iecr.0c05834
70 M WangG TanM DangY WangB Zhang H RenL Lv A Xia (2021b). Dual defects and build-in electric field mediated direct Z-scheme W18O49/g-C3N4−x heterojunction for photocatalytic NO removal and organic pollutant degradation. Journal of Colloid and Interface Science, 582(Pt A): 212−226
71 M Wang, G Q Tan, H J Ren, A Xia, Y Liu. (2019a). Direct double Z-scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity. Applied Surface Science, 492 : 690–702
https://doi.org/10.1016/j.apsusc.2019.06.260
72 M Wang, B Wang, B Xie, N Li, Q Xu, H Li, J He, D Chen, J Lu. (2022). Ultrathin Two-Dimensional BiOCl with oxygen vacancies anchored in three-dimensional porous g-C3N4 to construct a hierarchical Z-scheme heterojunction for the photocatalytic degradation of NO. Industrial & Engineering Chemistry Research, 61( 1): 317–329
https://doi.org/10.1021/acs.iecr.1c04155
73 S Y Wang, X Ding, N Yang, G M Zhan, X H Zhang, G H Dong, L Z Zhang, H Chen. (2020). Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Applied Catalysis B: Environmental, 265 : 118585
https://doi.org/10.1016/j.apcatb.2019.118585
74 X Wang, K Maeda, A Thomas, K Takanabe, G Xin, J M Carlsson, K Domen, M Antonietti. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8( 1): 76–80
https://doi.org/10.1038/nmat2317
75 X Wang, J Zhu, X Fu, J Xu, X Yu, Y Zhu, Y Zhang, M Zhu. (2021c). Boosted visible-light photocatalytic performance of Au/BiOCl/BiOI by high-speed spatial electron transfer channel. Journal of Alloys and Compounds, 890 : 161736
https://doi.org/10.1016/j.jallcom.2021.161736
76 Y Wang, X Hu, H Song, Y Cai, Z Li, D Zu, P Zhang, D Chong, N Gao, Y Shen, C Li. (2021d). Oxygen vacancies in actiniae-like Nb2O5/Nb2C MXene heterojunction boosting visible light photocatalytic NO removal. Applied Catalysis B: Environmental, 299 : 120677
https://doi.org/10.1016/j.apcatb.2021.120677
77 Y N Wang, Y Q Zeng, S L Zhang, Q Zhong. (2019b). Synthesis of 3D hierarchical rose-like Bi2WO6 superstructure with enhanced visible-light-induced photocatalytic performance. JOM, 71( 6): 2112–2119
https://doi.org/10.1007/s11837-019-03438-3
78 Z Y Wang, Y Huang, W K Ho, J J Cao, Z X Shen, S C Lee. (2016). Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study. Applied Catalysis B: Environmental, 199 : 123–133
https://doi.org/10.1016/j.apcatb.2016.06.027
79 F Wu, C Pu, M Zhang, B Liu, J Yang. (2021). Silver embedded in defective twin brush-like ZnO for efficient and stable photocatalytic NO removal. Surfaces and Interfaces, 25 : 101298
https://doi.org/10.1016/j.surfin.2021.101298
80 X Xia, C Xie, B Xu, X Ji, G Gao, P Yang. (2022). Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. Journal of Industrial and Engineering Chemistry, 105 : 303–312
https://doi.org/10.1016/j.jiec.2021.09.033
81 S Xiao, Z Wan, J Zhou, H Li, H Zhang, C Su, W Chen, G Li, D Zhang, H Li. (2019). Gas-phase photoelectrocatalysis for breaking down nitric oxide. Environmental Science & Technology, 53( 12): 7145–7154
https://doi.org/10.1021/acs.est.9b00986
82 S Xiao, W Zhu, P Liu, F Liu, W Dai, D Zhang, W Chen, H Li. (2016). CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation. Nanoscale, 8( 5): 2899–2907
https://doi.org/10.1039/C5NR07589K
83 S N Xiao, D L Pan, R Liang, W R Dai, Q T Zhang, G Q Zhang, C L Su, H X Li, W Chen. (2018). Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with High performance in visible-light photocatalytic NO oxidization. Applied Catalysis B: Environmental, 236 : 304–313
https://doi.org/10.1016/j.apcatb.2018.05.033
84 B Xie, D Chen, N Li, Q Xu, H Li, J He, J Lu. (2022). Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation. Chemical Engineering Journal, 430 : 132968
https://doi.org/10.1016/j.cej.2021.132968
85 F X Xie, R Li, X C Zhang, Y W Wang, C M Fan. (2020). In situ growth of BiOCl thin film on Bi plate for photocatalytic application. Materials Letters, 260 : 126937
https://doi.org/10.1016/j.matlet.2019.126937
86 M W Xiong, Y Tao, Z S Zhao, Q Zhu, X Q Jin, S Q Zhang, M Chen, G S Li. (2021). Porous g-C3N4/TiO2 foam photocatalytic filter for treating NO indoor gas. Environmental Science. Nano, 8( 6): 1571–1579
https://doi.org/10.1039/D1EN00318F
87 L Yang, Y Yu, W Yang, X Li, G Zhang, Y Shen, F Dong, Y Sun. (2021a). Efficient visible light photocatalytic NO abatement over SrSn(OH)6 nanowires loaded with Ag/Ag2O cocatalyst. Environmental Research, 201 : 111521
https://doi.org/10.1016/j.envres.2021.111521
88 X L Yang, S Y Wang, T Chen, N Yang, K Jiang, P Wang, S Li, X Ding, H Chen. (2021b). Chloridion-induced dual tunable fabrication of oxygen-deficient Bi2WO6 atomic layers for deep oxidation of NO. Chinese Journal of Catalysis, 42( 6): 1013–1023
https://doi.org/10.1016/S1872-2067(20)63708-1
89 C Yuan, R Chen, J Wang, H Wu, J Sheng, F Dong, Y Sun. (2020). La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression. Journal of Hazardous Materials, 400 : 123174
https://doi.org/10.1016/j.jhazmat.2020.123174
90 R Zha, Y Niu, C Liu, L He, M Zhang. (2021). Oxygen vacancy configuration in confined BiVO4-Bi2S3 heterostructures promotes photocatalytic oxidation of NO. Journal of Environmental Chemical Engineering, 9( 6): 106586
https://doi.org/10.1016/j.jece.2021.106586
91 D Q Zhang, M C Wen, S S Zhang, P J Liu, W Zhu, G S Li, H X Li. (2014). Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation. Applied Catalysis B: Environmental, 147 : 610–616
https://doi.org/10.1016/j.apcatb.2013.09.042
92 J Zhang, G Zhu, S Li, F Rao, Q U Hassan, J Gao, Y Huang, M Hojamberdiev. (2019a). Novel Au/La-Bi5O7I microspheres with efficient visible-light photocatalytic activity for NO removal: Synergistic effect of Au nanoparticles, La doping, and oxygen vacancy. ACS Applied Materials & Interfaces, 11( 41): 37822–37832
https://doi.org/10.1021/acsami.9b14300
93 W Zhang, Y Liang. (2019). Facile synthesis of ternary g-C3N4@BiOCl/Bi12O17Cl2 composites with excellent visible light photocatalytic activity for NO removal. Frontiers in Chemistry, 7 : 231
https://doi.org/10.3389/fchem.2019.00231
94 W D Zhang, X A Dong, B Jia, J B Zhong, Y J Sun, F Dong. (2018a). 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation. Applied Surface Science, 430 : 571–577
https://doi.org/10.1016/j.apsusc.2017.06.186
95 W D Zhang, X A Dong, Y Liang, R Liu, Y J Sun, F Dong. (2019b). Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Metals, 38( 5): 437–445
https://doi.org/10.1007/s12598-019-01230-5
96 W D Zhang, X G Dong, Y Liang, Y J Sun, F Dong. (2018b). Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: Enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation. Applied Surface Science, 455 : 236–243
https://doi.org/10.1016/j.apsusc.2018.05.171
97 W D Zhang, X L Liu, X A Dong, F Dong, Y X Zhang. (2017). Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: In situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chinese Journal of Catalysis, 38( 12): 2030–2038
https://doi.org/10.1016/S1872-2067(17)62941-3
98 C Zhao, X Pan, Z H Wang, C C Wang. (2021). 1+1 > 2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chemical Engineering Journal, 417 : 128022
https://doi.org/10.1016/j.cej.2020.128022
99 Q Zheng, Y H Cao, N J Huang, R Y Zhang, Y Zhou. (2021). Selective exposure of BiOI oxygen-rich {110} facet induced by BN nanosheets for enhanced photocatalytic oxidation performance. Chinese Journalof Chemical Physics, 37( 8): 2009063
100 L Zhu, Y Wu, S Wu, F Dong, J Xia, B Jiang. (2021). Tuning the active sites of atomically thin defective Bi12O17Cl2 via incorporation of subnanometer clusters. ACS Applied Materials & Interfaces, 13( 7): 9216–9223
https://doi.org/10.1021/acsami.0c21454
[1] Xiaoying Wang, Haiguang Zhang, Xu Wang, Shuo Chen, Hongtao Yu, Xie Quan. Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability and electro-enhanced rejection performance[J]. Front. Environ. Sci. Eng., 2023, 17(1): 1-.
[2] Wei Tan, Shaohua Xie, Wenpo Shan, Zhihua Lian, Lijuan Xie, Annai Liu, Fei Gao, Lin Dong, Hong He, Fudong Liu. CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study[J]. Front. Environ. Sci. Eng., 2022, 16(5): 60-.
[3] Shuangyang Zhao, Chengxin Chen, Jie Ding, Shanshan Yang, Yani Zang, Nanqi Ren. One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B[J]. Front. Environ. Sci. Eng., 2022, 16(3): 36-.
[4] Tao Yan, Qianqian Yang, Rui Feng, Xiang Ren, Yanxia Zhao, Meng Sun, Liangguo Yan, Qin Wei. Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite[J]. Front. Environ. Sci. Eng., 2022, 16(10): 131-.
[5] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[6] Jing Gu, Hongtao Yu, Xie Quan, Shuo Chen, Junfeng Niu. Utilizing transparent and conductive SnO2 as electron mediator to enhance the photocatalytic performance of Z-scheme Si-SnO2-TiOx[J]. Front. Environ. Sci. Eng., 2020, 14(4): 72-.
[7] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[8] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[9] Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao. G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance[J]. Front. Environ. Sci. Eng., 2019, 13(6): 81-.
[10] Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water[J]. Front. Environ. Sci. Eng., 2019, 13(6): 86-.
[11] Xuejiao Wang, Xiang Feng, Jing Shang. Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or supporting electrolyte[J]. Front. Environ. Sci. Eng., 2018, 12(6): 11-.
[12] Shi Yin, Yan-Qiu Chen, Yue-Li Li, Wang-Lai Cen, Hua-Qiang Yin. Static and dynamic characteristics of SO2-O2 aqueous solution in the microstructure of porous carbon materials[J]. Front. Environ. Sci. Eng., 2018, 12(5): 12-.
[13] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[14] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[15] Yu YANG,Zhicheng YU,Takayuki NOSAKA,Kyle DOUDRICK,Kiril HRISTOVSKI,Pierre HERCKES,Paul WESTERHOFF. Interaction of carbonaceous nanomaterials with wastewater biomass[J]. Front. Environ. Sci. Eng., 2015, 9(5): 823-831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed