Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (10) : 131    https://doi.org/10.1007/s11783-022-1566-z
RESEARCH ARTICLE
Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite
Tao Yan1(), Qianqian Yang1, Rui Feng1, Xiang Ren2, Yanxia Zhao1, Meng Sun1(), Liangguo Yan1, Qin Wei2
1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
2. Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
 Download: PDF(7871 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● An urchin-like OMS/ZIS composite was fabricated by a facile solvothermal method.

● The OMS/ZIS exhibits superior photocatalytic H2 evolution for organics degradation.

● A probable mechanism of dual-functional photocatalysis was proposed in detail.

● This work provides an inspiration for rational design of dual-functional catalysts.

Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effective characteristics of this approach. In this work, an urchin-like oxygen-doped MoS2/ZnIn2S4 (OMS/ZIS) composite was fabricated for the first time using a simple solvothermal method. The unique microstructure with abundant active sites and fast charge transfer channels further shortened the charge migration distance and compressed carrier recombination. The obtained composite exhibited an efficient H2 evolution reaction rate of 12.8 mmol/g/h under visible light, which was nearly times higher than pristine ZnIn2S4, and the apparent quantum efficiency was 14.9% (420 nm). The results of the simultaneous photocatalytic H2 evolution and organic pollutant decomposition test were satisfactory, resulting in decomposition efficiencies of resorcinol, tetracycline, and bisphenol A that reached 41.5%, 63.5%, and 53.0% after 4 h, respectively, and the highest H2 evolution rate was 672.7 μmol/g/h for bisphenol A. Furthermore, natural organic matter (NOM) abundantly found in actual water was adopted as an electron donor for H production under simulated sunlight irradiation, indicating the promising practicability of simultaneous hydrogen evolution and NOM decomposition. Moreover, the mechanisms of the dual-purpose photocatalytic reactions, as well as the synergistic effect between the molecular structures of the organic pollutants and the corresponding adsorption behavior on the photocatalyst surface were illustrated in detail. These obtained results may serve as an inspiration for the rational design of highly efficient, dual-functional photocatalysts in the future.

Keywords Dual-functional photocatalysts      Oxygen-doped MoS2/ZnIn2S4      H2 evolution      Organic pollutant     
Corresponding Author(s): Tao Yan,Meng Sun   
Issue Date: 22 April 2022
 Cite this article:   
Tao Yan,Qianqian Yang,Rui Feng, et al. Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite[J]. Front. Environ. Sci. Eng., 2022, 16(10): 131.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1566-z
https://academic.hep.com.cn/fese/EN/Y2022/V16/I10/131
  Scheme1 Schematic showing the fabrication process of the OMS/ZIS composite.
Fig.1  XRD patterns of OMS, ZnIn2S4, and the OMS/ZIS composites.
Fig.2  SEM images of OMS (A), ZnIn2S4 (B), and 10-OMS/ZIS (C); TEM images of 10-OMS/ZIS (D–E); HRTEM image of 10-OMS/ZIS (F); SEM image of 10-OMS/ZIS and (G) corresponding elemental mapping images.
Fig.3  XPS spectra of (A) ZIS, OMS, and 10-OMS/ZIS; (B) Zn 2p; (C) In 3d; (D) S 2p; (E) Mo 3d; (F) O 1s.
Fig.4  UV-vis DRS spectra of OMS, ZnIn2S4, and the OMS/ZIS composites (A), plots of (α)2 vs. for the band gap energies of ZnIn2S4 and the OMS/ZIS composites (B).
Fig.5  Plots of photocatalytic HER quantity vs. irradiation time (A); comparison of the HER rate for the as-synthesized samples under visible-light (B); UV-vis spectra and AQE of ZnIn2S4 and 10-OMS/ZIS (C); cycling experiment of photocatalytic HER activity over 10-OMS/ZIS (D). Error bars show the standard deviation of repeated measurements (n = 3).
Fig.6  Dependence between the HER rate and BPA concentration using 10-OMS/ZIS as the photocatalyst (A), where the black line indicates Langmuir–Hinshelwood fitting; HER and simultaneous BPA degradation over 10-OMS/ZIS under visible light for 4 h at different initial concentrations (B); accumulation of H2 for 4 h over different pollutants (C); simultaneous hydrogen production with pollutant degradation (D). Error bars show the standard deviation of repeated measurements (n = 3).
Fig.7  3D EEM spectra of lake water under photocatalytic treatment: untreated (A) and after 4 h of treatment (B); UV-vis absorbance of lake water at 254 nm and the HER rate (C). Error bars show the standard deviation of repeated measurements (n = 3).
Fig.8  PL spectra (excitation wavelength at 335 nm in Fig. S11) (A); time-resolved fluorescence emission decay curves of ZnIn2S4 and 10-OMS/ZIS (B); transient photocurrent responses (C); EIS Nyquist plots of the as-synthesized samples (D).
Fig.9  LSV curves (A) and corresponding Tafel plots of ZnIn2S4 and 10-OMS/ZIS (B).
Fig.10  Frontier electron densities of LUMO and HOMO for TC, RC, and BPA.
  Scheme2 Schematic showing the possible mechanism of the OMS/ZIS composite for simultaneous photocatalytic HER and organic degradation.
1 L S Byskov , J K Nørskov , B S Clausen , H Topsøe . (1999). DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. Journal of Catalysis, 187( 1): 109– 122
https://doi.org/10.1006/jcat.1999.2598
2 B Chai , C Liu , C Wang , J Yan , Z Ren . (2017). Photocatalytic hydrogen evolution activity over MoS2/ZnIn2S4 microspheres. Chinese Journal of Catalysis, 38( 12): 2067– 2075
https://doi.org/10.1016/S1872-2067(17)62981-4
3 S Chandrasekaran , L Yao , L Deng , C Bowen , Y Zhang , S Chen , Z Lin , F Peng , P Zhang . (2019). Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 48( 15): 4178– 4280
https://doi.org/10.1039/C8CS00664D
4 G Chen N Ding F Li Y Fan Y Luo D Li Q Meng ( 2014). Enhancement of photocatalytic H2 evolution on ZnIn2S4 loaded with in-situ photo-deposited MoS2 under visible light irradiation . Applied Catalysis B: Environmental, 160−161: 614− 620
5 S Chen , S Li , L Xiong , G Wang . (2018). In-situ growth of ZnIn2S4 decorated on electrospun TiO2 nanofibers with enhanced visible-light photocatalytic activity. Chemical Physics Letters, 706 : 68– 75
https://doi.org/10.1016/j.cplett.2018.05.074
6 Y J Cho , G H Moon , T Kanazawa , K Maeda , W Choi . (2016). Selective dual-purpose photocatalysis for simultaneous H2 evolution and mineralization of organic compounds enabled by a Cr2O3 barrier layer coated on Rh/SrTiO3. Chemical Communications, 52( 62): 9636– 9639
https://doi.org/10.1039/C6CC04260K
7 V M Daskalaki , M Antoniadou , G Li Puma , D I Kondarides , P Lianos . (2010). Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environmental Science & Technology, 44( 19): 7200– 7205
https://doi.org/10.1021/es9038962
8 N Ding , Y Fan , Y Luo , D Li , Q Meng . (2015). Enhancement of H2 evolution over new ZnIn2S4/RGO/MoS2 photocatalysts under visible light. APL Materials, 3( 10): 104417
https://doi.org/10.1063/1.4930213
9 C Du , Q Zhang , Z Lin , B Yan , C Xia , G Yang . (2019). Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 248 : 193– 201
https://doi.org/10.1016/j.apcatb.2019.02.027
10 M Eisenstein . (2015). Pesticides: Seeking answers amid a toxic debate. Nature, 521( 7552): S52– S55
https://doi.org/10.1038/521S52a
11 B Gao , X Du , Y Ma , Y Li , Y Li , S Ding , Z Song , C Xiao . (2020). 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Applied Catalysis B: Environmental, 263 : 117750
https://doi.org/10.1016/j.apcatb.2019.117750
12 Z Guan P Wang Q Li G Li J Yang( 2018). Constructing a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H2 production . Dalton Transactions (Cambridge, England), 47( 19): 6800− 6807
13 M Hao , X Deng , L Xu , Z Li . (2019). Noble metal free MoS2/ZnIn2S4 nanocomposite for acceptorless photocatalytic semi-dehydrogenation of 1,2,3,4-tetrahydroisoquinoline to produce 3,4-dihydroisoquinoline. Applied Catalysis B: Environmental, 252 : 18– 23
https://doi.org/10.1016/j.apcatb.2019.04.002
14 Y Hou , A B Laursen , J Zhang , G Zhang , Y Zhu , X Wang , S Dahl , I Chorkendorff . (2013). Layered nanojunctions for hydrogen-evolution catalysis. Angewandte Chemie International Edition, 52( 13): 3621– 3625
https://doi.org/10.1002/anie.201210294
15 P Hu , H Su , Z Chen , C Yu , Q Li , B Zhou , P J J Alvarez , M Long . (2017). Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation. Environmental Science & Technology, 51( 19): 11288– 11296
https://doi.org/10.1021/acs.est.7b03014
16 T Huang , W Chen , T Y Liu , Q L Hao , X H Liu . (2017). ZnIn2S4 hybrid with MoS2: A non-noble metal photocatalyst with efficient photocatalytic activity for hydrogen evolution. Powder Technology, 315 : 157– 162
https://doi.org/10.1016/j.powtec.2017.03.054
17 G Jiang , K Wang , J Li , W Fu , Z Zhang , G Johnson , X Lv , Y Zhang , S Zhang , F Dong . (2018a). Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chemical Engineering Journal, 348 : 26– 34
https://doi.org/10.1016/j.cej.2018.04.173
18 X H Jiang , L C Wang , F Yu , Y C Nie , Q J Xing , X Liu , Y Pei , J P Zou , W L Dai . (2018b). Photodegradation of organic pollutants coupled with simultaneous photocatalytic evolution of hydrogen using quantum-dot-modified g-C3N4 catalysts under visible-light irradiation. ACS Sustainable Chemistry & Engineering, 6( 10): 12695– 12705
https://doi.org/10.1021/acssuschemeng.8b01695
19 W K Jo , T S Natarajan . (2016). Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn2S4) - graphitic carbon nitride (g-C3N4)/bismuth vanadate (BiVO4) nanorod-based ternary nanocomposites with enhanced charge separation via Z-scheme transfer. Journal of Colloid and Interface Science, 482 : 58– 72
https://doi.org/10.1016/j.jcis.2016.07.062
20 S Kampouri , T N Nguyen , M Spodaryk , R G Palgrave , A Züttel , B Smit , K C Stylianou . (2018). Concurrent photocatalytic hydrogen generation and dye degradation using MIL‐125‐NH2 under visible light irradiation. Advanced Functional Materials, 28( 52): 1806368
https://doi.org/10.1002/adfm.201806368
21 S Kampouri , K C Stylianou . (2019). Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catalysis, 9( 5): 4247– 4270
https://doi.org/10.1021/acscatal.9b00332
22 T Li , W Zhong , C Jing , X Li , T Zhang , C Jiang , W Chen . (2020). Enhanced hydrolysis of p-nitrophenyl phosphate by iron (hydr) oxide nanoparticles: Roles of exposed facets. Environmental Science & Technology, 54( 14): 8658– 8667
https://doi.org/10.1021/acs.est.9b07473
23 W Li , Z Lin , G Yang . (2017). A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale, 9( 46): 18290– 18298
https://doi.org/10.1039/C7NR06755K
24 Y Li G Lu S Li ( 2001). Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Applied Catalysis A, General, 214( 2): 179− 185
25 Z Lin , L Li , L Yu , W Li , G Yang . (2017). Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters. Physical Chemistry Chemical Physics, 19( 12): 8356– 8362
https://doi.org/10.1039/C7CP00250E
26 C Liu , L Wang , Y Tang , S Luo , Y Liu , S Zhang , Y Zeng , Y Xu . (2015). Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 164 : 1– 9
https://doi.org/10.1016/j.apcatb.2014.08.046
27 H Liu , J Zhang , D Ao . (2018a). Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Applied Catalysis B: Environmental, 221 : 433– 442
https://doi.org/10.1016/j.apcatb.2017.09.043
28 J Liu , W Fang , Z Wei , Z Qin , Z Jiang , W Shangguan . (2018b). Metallic 1T-LixMoS2 co-catalyst enhanced photocatalytic hydrogen evolution over ZnIn2S4 floriated microspheres under visible light irradiation. Catalysis Science & Technology, 8( 5): 1375– 1382
https://doi.org/10.1039/C7CY02456H
29 K H Liu , H X Zhong , S J Li , Y X Duan , M M Shi , X B Zhang , J M Yan , Q Jiang . (2018c). Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 92 : 64– 111
https://doi.org/10.1016/j.pmatsci.2017.09.001
30 J Ma , H Wang , X Liu , L Lu , L Nie , X Yang , Y Chai , R Yuan . (2017). Synthesis of tube shape MnO/Cp composite from 3,4,9,10-perylenetetracarboxylic dianhydride for lithium ion batteries. Chemical Engineering Journal, 309 : 545– 551
https://doi.org/10.1016/j.cej.2016.10.067
31 T Maqbool , Y Qin , Q V Ly , J Zhang , C Li , M B Asif , Z Zhang . (2020). Exploring the relative changes in dissolved organic matter for assessing the water quality of full-scale drinking water treatment plants using a fluorescence ratio approach. Water Research, 183 : 116125
https://doi.org/10.1016/j.watres.2020.116125
32 Z Mo , H Xu , Z Chen , X She , Y Song , J Wu , P Yan , L Xu , Y Lei , S Yuan , H Li . (2018). Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 225 : 154– 161
https://doi.org/10.1016/j.apcatb.2017.11.041
33 Y C Nie , F Yu , L C Wang , Q J Xing , X Liu , Y Pei , J P Zou , W L Dai , Y Li , S L Suib . (2018). Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism. Applied Catalysis B: Environmental, 227 : 312– 321
https://doi.org/10.1016/j.apcatb.2018.01.033
34 A Patsoura , D I Kondarides , X E Verykios . (2006). Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Applied Catalysis B: Environmental, 64( 3-4): 171– 179
https://doi.org/10.1016/j.apcatb.2005.11.015
35 N Sun , Y Qu , C Yang , Z Yang , R Yan , W E , Z Zhang , Z Li , H Li , I Khan . (2020). Efficiently photocatalytic degradation of monochlorophenol on in-situ fabricated BiPO4/β-Bi2O3 heterojunction microspheres and O2-free hole-induced selective dechloridation conversion with H2 evolution. Applied Catalysis B: Environmental, 263 : 118313
https://doi.org/10.1016/j.apcatb.2019.118313
36 G Swain , S Sultana , K Parida . (2019). One-pot-architectured Au-nanodot-promoted MoS2/ZnIn2S4: A novel p–n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation. Inorganic Chemistry, 58( 15): 9941– 9955
https://doi.org/10.1021/acs.inorgchem.9b01105
37 Y J Tang , Y Wang , X L Wang , S L Li , W Huang , L Z Dong , C H Liu , Y F Li , Y Q Lan . (2016). Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Advanced Energy Materials, 6( 12): 1600116
https://doi.org/10.1002/aenm.201600116
38 G Tian Y Chen Z Ren C Tian K Pan W Zhou J Wang H Fu ( 2014). Enhanced photocatalytic hydrogen evolution over hierarchical composites of ZnIn2S4 nanosheets grown on MoS2 slices . Chemistry, An Asian Journal, 9( 5): 1291− 1297
pmid: 24591443
39 S Wan , M Ou , Q Zhong , S Zhang , F Song . (2017). Construction of Z-scheme photocatalytic systems using ZnIn2S4, CoOx-loaded Bi2MoO6 and reduced graphene oxide electron mediator and its efficient nonsacrificial water splitting under visible light. Chemical Engineering Journal, 325 : 690– 699
https://doi.org/10.1016/j.cej.2017.05.047
40 H Wang , Y Wu , M Feng , W Tu , T Xiao , T Xiong , H Ang , X Yuan , J W Chew . (2018a). Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Research, 144 : 215– 225
https://doi.org/10.1016/j.watres.2018.07.025
41 Q Wang , J Huang , H Sun , Y H Ng , K Q Zhang , Y Lai . (2018b). MoS2 quantum dots@TiO2 nanotube arrays: An extended-spectrum-driven photocatalyst for solar hydrogen evolution. ChemSusChem, 11( 10): 1708– 1721
https://doi.org/10.1002/cssc.201800379
42 S Wang , B Zhu , M Liu , L Zhang , J Yu , M Zhou . (2019). Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Catalysis B: Environmental, 243 : 19– 26
https://doi.org/10.1016/j.apcatb.2018.10.019
43 L Wei , Y Chen , Y Lin , H Wu , R Yuan , Z Li . (2014). MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Applied Catalysis B: Environmental, 144 : 521– 527
https://doi.org/10.1016/j.apcatb.2013.07.064
44 Z Wei , J Liu , W Fang , M Xu , Z Qin , Z Jiang , W Shangguan . (2019). Photocatalytic hydrogen evolution with simultaneous antibiotic wastewater degradation via the visible-light-responsive bismuth spheres-g-C3N4 nanohybrid: Waste to energy insight. Chemical Engineering Journal, 358 : 944– 954
https://doi.org/10.1016/j.cej.2018.10.096
45 Z Wu X Liu J Liu S Liu Z Zha Z (2019) Chen. Molybdenum disulfide based composites and their photocatalytic degradation and hydrogen evolution properties. Progress in Chemistry, 31(8): 1086− 1102 (in Chinese)
46 X Xiao R Hao M Liang X Zuo J Nan L Li W (2012) Zhang. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. Journal of Hazardous Materials, 233–234: 122–130
pmid: 22818177
47 Y Xu , A Yan , L Jiang , F Huang , D Hu , G Duan , F Zheng . (2022). MoS2/HCSs/ZnIn2S4 nanocomposites with enhanced charge transport and photocatalytic hydrogen evolution performance. Journal of Alloys and Compounds, 895 : 162504
https://doi.org/10.1016/j.jallcom.2021.162504
48 G Yang , H Ding , D Chen , J Feng , Q Hao , Y Zhu . (2018). Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 234 : 260– 267
https://doi.org/10.1016/j.apcatb.2018.04.038
49 H Yi , D Huang , L Qin , G Zeng , C Lai , M Cheng , S Ye , B Song , X Ren , X Guo . (2018). Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Applied Catalysis B: Environmental, 239 : 408– 424
https://doi.org/10.1016/j.apcatb.2018.07.068
50 Y J Yuan D Chen J Zhong L X Yang J Wang M J Liu W G Tu Z T Yu Z G (2017) Zou. Interface engineering of a noble-metal-free 2D–2D MoS2/Cu-ZnIn2S4 photocatalyst for enhanced photocatalytic H2 production . Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 5(30): 15771– 15779
51 Y J Yuan , J R Tu , Z J Ye , D Q Chen , B Hu , Y W Huang , T T Chen , D P Cao , Z T Yu , Z G Zou . (2016). MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Applied Catalysis B: Environmental, 188 : 13– 22
https://doi.org/10.1016/j.apcatb.2016.01.061
52 G Zhang , D Chen , N Li , Q Xu , H Li , J He , J Lu . (2020). Construction of hierarchical hollow Co9S8/ZnIn2S4 tubular heterostructures for highly efficient solar energy conversion and environmental remediation. Angewandte Chemie, 132( 21): 8332– 8338
https://doi.org/10.1002/ange.202000503
53 S Zhang , P Gu , R Ma , C Luo , T Wen , G Zhao , W Cheng , X Wang . (2019). Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catalysis Today, 335 : 65– 77
https://doi.org/10.1016/j.cattod.2018.09.013
54 S Zhang , X Liu , C Liu , S Luo , L Wang , T Cai , Y Zeng , J Yuan , W Dong , Y Pei , Y Liu . (2018a). MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano, 12( 1): 751– 758
https://doi.org/10.1021/acsnano.7b07974
55 S Zhang , L Wang , C Liu , J Luo , J Crittenden , X Liu , T Cai , J Yuan , Y Pei , Y Liu . (2017). Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst. Water Research, 121 : 11– 19
https://doi.org/10.1016/j.watres.2017.05.013
56 X H Zhang , N Li , J Wu , Y Z Zheng , X Tao . (2018b). Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Applied Catalysis B: Environmental, 229 : 227– 236
https://doi.org/10.1016/j.apcatb.2018.02.025
57 Z Zhang , L Huang , J Zhang , F Wang , Y Xie , X Shang , Y Gu , H Zhao , X Wang . (2018c). In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 233 : 112– 119
https://doi.org/10.1016/j.apcatb.2018.04.006
58 T Zhao , Z Xing , Z Xiu , Z Li , S Yang , W Zhou . (2019). Oxygen-doped MoS2 nanospheres/CdS quantum dots/g-C3N4 nanosheets super-architectures for prolonged charge lifetime and enhanced visible-light-driven photocatalytic performance. ACS Applied Materials & Interfaces, 11( 7): 7104– 7111
https://doi.org/10.1021/acsami.8b21131
[1] FSE-22006-OF-YT_suppl_1 Download
[1] Yang Zhang, Zheng Peng, Zhaomin Dong, Mujie Wang, Chen Jiang. Twenty years of achievements in China’s implementation of the Stockholm Convention[J]. Front. Environ. Sci. Eng., 2022, 16(12): 152-.
[2] Peidong Su, Xiangyu Gao, Junke Zhang, Ridha Djellabi, Bo Yang, Qi Wu, Zhen Wen. Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant removal[J]. Front. Environ. Sci. Eng., 2021, 15(6): 130-.
[3] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[4] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[5] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[6] Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang. Magnetotactic bacteria: Characteristics and environmental applications[J]. Front. Environ. Sci. Eng., 2020, 14(4): 56-.
[7] Jing Gu, Hongtao Yu, Xie Quan, Shuo Chen, Junfeng Niu. Utilizing transparent and conductive SnO2 as electron mediator to enhance the photocatalytic performance of Z-scheme Si-SnO2-TiOx[J]. Front. Environ. Sci. Eng., 2020, 14(4): 72-.
[8] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[9] Kubra Ulucan-Altuntas, Eyup Debik. Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways[J]. Front. Environ. Sci. Eng., 2020, 14(1): 17-.
[10] Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(2): 18-.
[11] Qing ZHANG. Predictive models on photolysis and photoinduced toxicity of persistent organic chemicals[J]. Front Envir Sci Eng, 2013, 7(6): 803-814.
[12] LIU Zhenyu, YANG Fenglin, QUAN Xie, ZHANG Xiaohong. Dynamic fate modeling of γ-hexachlorocyclohexane in the lower reaches of the Liao River[J]. Front.Environ.Sci.Eng., 2007, 1(2): 166-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed