Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (1) : 1    https://doi.org/10.1007/s11783-023-1601-8
RESEARCH ARTICLE
Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability and electro-enhanced rejection performance
Xiaoying Wang, Haiguang Zhang, Xu Wang, Shuo Chen, Hongtao Yu, Xie Quan()
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
 Download: PDF(11402 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Electroconductive RGO-MXene membranes were fabricated.

● Wettable membrane channels were established between RGO and MXene nanosheets.

● Hydrophilic MXene reduces the resistance of water entering the membrane channels.

● Water permeance of RGO-MXene membrane is 16.8 times higher than that of RGO membrane.

● Electro-assistance can enhance the dye rejection performance of RGO-MXene membrane.

Reduced graphene oxide (RGO) membranes are theoretically more conducive to the rapid transport of water molecules in their channels compared with graphene oxide (GO) membranes, as they have fewer oxygen-containing functional groups and more non-oxidized regions. However, the weak hydrophilicity of RGO membranes inhibits water entry into their channels, resulting in their low water permeability. In this work, we constructed wettable RGO-MXene channels by intercalating hydrophilic MXene nanosheets into the RGO membrane for improving the water permeance. The RGO-MXene composite membrane exhibits high pure water permeance of 62.1 L/(m2·h·bar), approximately 16.8 times that of the RGO membrane (3.7 L/(m2·h·bar)). Wettability test results and molecular dynamics simulations suggest that the improved water permeance results from the enhanced wettability of RGO-MXene membrane and increased rate of water molecules entering the RGO-MXene channels. Benefiting from good conductivity, the RGO-MXene membrane with electro-assistance exhibits significantly increased rejection rates for negatively charged dyes (from 56.0% at 0 V to 91.4% at 2.0 V for Orange G) without decreasing the permeate flux, which could be attributed to enhanced electrostatic repulsion under electro-assistance.

Keywords Reduced graphene oxide      MXene      Membrane      Water permeance      Dye rejection      Electro-assistance     
Corresponding Author(s): Xie Quan   
Issue Date: 14 July 2022
 Cite this article:   
Xiaoying Wang,Haiguang Zhang,Xu Wang, et al. Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability and electro-enhanced rejection performance[J]. Front. Environ. Sci. Eng., 2023, 17(1): 1.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1601-8
https://academic.hep.com.cn/fese/EN/Y2023/V17/I1/1
Fig.1  (a) Illustration of the preparation process of RGO-MXene membranes; (b) AFM image of RGO nanosheets; (c) XPS C 1s spectra of RGO and GO; (d) Water contact angle of RGO; (e) AFM image of MXene nanosheets; (f) XRD spectra of MXene and Ti3AlC2; (g) Water contact angle of MXene.
Fig.2  SEM images of the surfaces of RGO (a) and RGO-MXene (b) membranes; (c) XPS spectra of RGO, MXene and RGO-MXene membranes; (d) Raman spectra of RGO, MXene and RGO-MXene membranes (inset: amplified Raman spectra of RGO, MXene and RGO-MXene membranes in the range of 100–800 cm?1); (e) XRD patterns of RGO, MXene and RGO-MXene membranes; (f) XRD patterns of RGO-MXene membranes at wet and dry states.
Fig.3  Pure water permeances (a) and water contact angles (b) of RGO, RM-30, RM-50, RM-60, RM-65 and RM-70 membranes; (c, d) Molecular dynamics simulations of water molecules through RGO-RGO channels and RGO-MXene channels: Snapshots of water molecules in the two channels when the simulation time is 0 ps and 100 ps in the simulation system; (e) The number of water molecules in the RGO-RGO and RGO-MXene channels as the function of time; (f) The rates of water molecules entering RGO-RGO and RGO-MXene channels; (g) The interaction energies between water molecules and the RGO-RGO and RGO-MXene channels as the function of time; (h) Permeate fluxes and OG rejection rates of RGO, RM-30, RM-50, RM-60, RM-65 and RM-70 membranes (OG concentration: 20 mg/L; pressure: 1 bar).
Fig.4  (a) Permeate fluxes and (b) OG rejection rates of RGO, RM-30, RM-50, RM-60, RM-65 and RM-70 membranes under 0 V and 2.0 V; (c) OG rejection rates of RM-65 membrane under different voltages; (d) OG rejection rates of RM-65 membrane without and with electro-assistance for 5 cycles; (e) Rejection rates of RM-65 membrane for RhB (neutrally charged), MLB and AB (positively charged), MO, CR, CBB and MB (negatively charged) under 0 V and 2.0 V (dye concentration: 20 mg/L; pressure: 1 bar).
Membrane Water flux(L/(m2·h·bar)) Dye concentration (mg/L) Dye rejection rate (%) Reference
GO/Co(OH)2 2.8 20 CR, CBB > 98.0 Dong et al., 2020b
nano-TiO2/PVA 5.0 50 MLB, 92.0MO, 52.1CR, 94.0 Li et al., 2014
GO/NH2-Fe3O4 15.6 100 MLB, 70.0MO, 75.0CR, 94.0 Dong et al., 2020a
TFC-2 17.0 100 CR, 85.0 Ounifi et al., 2022
PEI-g-GA@HPAN 25.5 100 CR, 97.1MB, 97.3 Zhao and Wang, 2017
c-CNT@GO 26.3 100 CR, 98.7MB, 94.1 Huang et al., 2021
RGO-MXene 62.1 20 MLB, 97.8MO, 68.7CR, 92.5MB, 99.0 This work
Tab.1  Filtration performance of RM-65 membrane compared with previous membranes
1 E Abaie , L Xu , Y X Shen . (2021). Bioinspired and biomimetic membranes for water purification and chemical separation: a review. Frontiers of Environmental Science & Engineering, 15( 6): 124
https://doi.org/10.1007/s11783-021-1412-8
2 J Abraham , K S Vasu , C D Williams , K Gopinadhan , Y Su , C T Cherian , J Dix , E Prestat , S J Haigh , I V Grigorieva , P Carbone , A K Geim , R R Nair . (2017). Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12( 6): 546– 550
https://doi.org/10.1038/nnano.2017.21
3 Kumar S Ashok G Srinivasan S (2019) Govindaradjane. Development of a new blended polyethersulfone membrane for dye removal from synthetic wastewater. Environmental Nanotechnology, Monitoring & Management, 12: 100238
4 L L Dong , M H Li , S Zhang , X J Si , Y X Bai , C F Zhang . (2020a). NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions. Desalination, 476 : 114227
https://doi.org/10.1016/j.desal.2019.114227
5 Y P Dong , C Lin , S J Gao , N Manoranjan , W X Li , W X Fang , J Jin . (2020b). Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection. Journal of Membrane Science, 607 : 118184
https://doi.org/10.1016/j.memsci.2020.118184
6 X T Fan , C B Cai , J Gao , X L Han , J D Li . (2020). Hydrothermal reduced graphene oxide membranes for dyes removing. Separation and Purification Technology, 241 : 116730
https://doi.org/10.1016/j.seppur.2020.116730
7 L Huang , S Huang , S R Venna , H Lin . (2018). Rightsizing nanochannels in reduced graphene oxide membranes by solvating for dye desalination. Environmental Science & Technology, 52( 21): 12649– 12655
https://doi.org/10.1021/acs.est.8b03661
8 L L Huang , Z Y Li , Y Luo , N Zhang , W X Qi , E Jiang , J J Bao , X P Zhang , W J Zheng , B G An , G H He . (2021). Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation. Separation and Purification Technology, 256 : 117839
https://doi.org/10.1016/j.seppur.2020.117839
9 W Li , X F Li , W Chang , J Wu , P F Liu , J J Wang , X Yao , Z Z Yu . (2020). Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Research, 13( 11): 3048– 3056
https://doi.org/10.1007/s12274-020-2970-y
10 X P Li , Y B Chen , X Y Hu , Y F Zhang , L J Hu . (2014). Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. Journal of Membrane Science, 471 : 118– 129
https://doi.org/10.1016/j.memsci.2014.08.018
11 Z K Li , Y C Liu , L B Li , Y Y Wei , J Caro , H Wang . (2019). Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. Journal of Membrane Science, 592 : 117361
https://doi.org/10.1016/j.memsci.2019.117361
12 B Lian , S De Luca , Y You , S Alwarappan , M Yoshimura , V Sahajwalla , S C Smith , G Leslie , R K Joshi . (2018). Extraordinary water adsorption characteristics of graphene oxide. Chemical Science, 9( 22): 5106– 5111
https://doi.org/10.1039/C8SC00545A
13 Q Liu , M Q Chen , Y Y Mao , G P Liu . (2021). Theoretical study on Janus graphene oxide membrane for water transport. Frontiers of Chemical Science and Engineering, 15( 4): 913– 921
https://doi.org/10.1007/s11705-020-1954-5
14 T Liu , X Y Liu , N Graham , W Z Yu , K N Sun . (2020). Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. Journal of Membrane Science, 593 : 117431
https://doi.org/10.1016/j.memsci.2019.117431
15 X Ming , A K Guo , Q Zhang , Z Z Guo , F Yu , B F Hou , Y Wang , K P Homewood , X B Wang . (2020). 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon, 167 : 285– 295
https://doi.org/10.1016/j.carbon.2020.06.023
16 M Naguib , M Kurtoglu , V Presser , J Lu , J Niu , M Heon , L Hultman , Y Gogotsi , M W Barsoum . (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23( 37): 4248– 4253
https://doi.org/10.1002/adma.201102306
17 R R Nair , H A Wu , P N Jayaram , I V Grigorieva , A K Geim . (2012). Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 335( 6067): 442– 444
https://doi.org/10.1126/science.1211694
18 I Ounifi , Y Guesmi , C Ursino , R Castro-Muñoz , H Agougui , M Jabli , A Hafiane , A Figoli , E Ferjani . (2022). Synthesis and characterization of a thin-film composite nanofiltration membrane based on polyamide-cellulose acetate: application for water purification. Journal of Polymers and the Environment, 30( 2): 707– 718
https://doi.org/10.1007/s10924-021-02233-z
19 R P Pandey , P A Rasheed , T Gomez , R S Azam , K A Mahmoud . (2020). A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2Tx (MXene)/cellulose acetate. Journal of Membrane Science, 607 : 118139
https://doi.org/10.1016/j.memsci.2020.118139
20 S Park , J An , I Jung , R D Piner , S J An , X Li , A Velamakanni , R S Ruoff . (2009). Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Letters, 9( 4): 1593– 1597
https://doi.org/10.1021/nl803798y
21 X Sang , Y Xie , M W Lin , M Alhabeb , K L Van Aken , Y Gogotsi , P R C Kent , K Xiao , R R Unocic . (2016). Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 10( 10): 9193– 9200
https://doi.org/10.1021/acsnano.6b05240
22 Y Su , V G Kravets , S L Wong , J Waters , A K Geim , R R Nair . (2014). Impermeable barrier films and protective coatings based on reduced graphene oxide. Nature Communications, 5( 1): 4843
https://doi.org/10.1038/ncomms5843
23 J Q Sun , C Z Hu , Z T Liu , H J Liu , J H Qu . (2019). Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon, 145 : 140– 148
https://doi.org/10.1016/j.carbon.2018.12.098
24 S Velioğlu , L Han , J W Chew . (2018). Understanding membrane pore-wetting in the membrane distillation of oil emulsions via molecular dynamics simulations. Journal of Membrane Science, 551 : 76– 84
https://doi.org/10.1016/j.memsci.2018.01.027
25 H Wang , B Gao , L A Hou , H K Shon , Q Yue , Z Wang . (2021). Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of boron removal and energy consumption. Frontiers of Environmental Science & Engineering, 15( 6): 135
https://doi.org/10.1007/s11783-021-1428-0
26 G L Wei , J Dong , J Bai , Y S Zhao , Y Li . (2019a). Structurally stable, antifouling, and easily renewable reduced graphene oxide membrane with a carbon nanotube protective layer. Environmental Science & Technology, 53( 20): 11896– 11903
https://doi.org/10.1021/acs.est.9b03129
27 G L Wei , Y S Zhao , J Dong , M Gao , C Li . (2020). Electrochemical cleaning of fouled laminar graphene membranes. Environmental Science & Technology Letters, 7( 10): 773– 778
https://doi.org/10.1021/acs.estlett.0c00617
28 S Wei , L Du , S Chen , H T Yu , X Quan . (2021). Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Frontiers of Environmental Science & Engineering, 15( 1): 11
https://doi.org/10.1007/s11783-020-1303-4
29 S C Wei , Y Xie , Y D Xing , L C Wang , H Q Ye , X Xiong , S Wang , K Han . (2019b). Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 582 : 414– 422
https://doi.org/10.1016/j.memsci.2019.03.085
30 J A Willcox , H J Kim . (2017a). Molecular dynamics study of water flow across multiple layers of pristine, oxidized, and mixed regions of graphene oxide: effect of graphene oxide layer-to-layer distance. Journal of Physical Chemistry C, 121( 42): 23659– 23668
https://doi.org/10.1021/acs.jpcc.7b06063
31 J A L Willcox , H J Kim . (2017b). Molecular dynamics study of water flow across multiple layers of pristine, oxidized, and mixed regions of graphene oxide. ACS Nano, 11( 2): 2187– 2193
https://doi.org/10.1021/acsnano.6b08538
32 Y Wu , C F Fu , Q Huang , P Zhang , P Cui , J Ran , J Yang , T Xu . (2021). 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 15( 4): 7586– 7595
https://doi.org/10.1021/acsnano.1c01105
33 W L Xu , C Fang , F Zhou , Z Song , Q Liu , R Qiao , M Yu . (2017). Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Letters, 17( 5): 2928– 2933
https://doi.org/10.1021/acs.nanolett.7b00148
34 W L Xu , F L Zhou , M Yu . (2018). Tuning water nanofiltration performance of few-layered, reduced graphene oxide membranes by oxygen plasma. Industrial & Engineering Chemistry Research, 57( 47): 16103– 16109
https://doi.org/10.1021/acs.iecr.8b02206
35 G Yi , S Chen , X Quan , G L Wei , X F Fan , H T Yu . (2018). Enhanced separation performance of carbon nanotube-polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance. Separation and Purification Technology, 197 : 107– 115
https://doi.org/10.1016/j.seppur.2017.12.058
36 H Zhang , X Quan , X Fan , G Yi , S Chen , H Yu , Y Chen . (2019). Improving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge density. Environmental Science & Technology, 53( 2): 868– 877
https://doi.org/10.1021/acs.est.8b04268
37 J D Zhang , Y Q Zheng , G D Jiang , C Z Yang , M Oyama . (2008). Electrocatalytic evaluation of liquid phase deposited methylene blue/TiO2 hybrid films. Electrochemistry Communications, 10( 7): 1038– 1040
https://doi.org/10.1016/j.elecom.2008.04.039
38 S Zhao , Z Wang . (2017). A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. Journal of Membrane Science, 524 : 214– 224
https://doi.org/10.1016/j.memsci.2016.11.035
[1] FSE-22043-OF-WXY_suppl_1 Download
[1] Huan Xi, Fanlu Min, Zhanhu Yao, Jianfeng Zhang. Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters[J]. Front. Environ. Sci. Eng., 2023, 17(6): 71-.
[2] Qian Li, Zhaoyang Hou, Xingyuan Huang, Shuming Yang, Jinfan Zhang, Jingwei Fu, Yu-You Li, Rong Chen. Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification and Anammox[J]. Front. Environ. Sci. Eng., 2023, 17(6): 68-.
[3] Haiguang Zhang, Lei Du, Jiajian Xing, Gaoliang Wei, Xie Quan. Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A[J]. Front. Environ. Sci. Eng., 2023, 17(5): 59-.
[4] Jie Liu, Junjun Ma, Weizhang Zhong, Jianrui Niu, Zaixing Li, Xiaoju Wang, Ge Shen, Chun Liu. Penicillin fermentation residue biochar as a high-performance electrode for membrane capacitive deionization[J]. Front. Environ. Sci. Eng., 2023, 17(4): 51-.
[5] Zhijun Liu, Xi Luo, Senlin Shao, Xue Xia. Electrocatalytic reduction of nitrate using Pd-Cu modified carbon nanotube membranes[J]. Front. Environ. Sci. Eng., 2023, 17(4): 40-.
[6] Shuang Zhang, Shuai Liang, Yifan Gao, Yang Wu, Xia Huang. Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment[J]. Front. Environ. Sci. Eng., 2023, 17(3): 30-.
[7] Hanqing Fan, Yuxuan Huang, Ngai Yin Yip. Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities[J]. Front. Environ. Sci. Eng., 2023, 17(2): 25-.
[8] Mourin Jarin, Zeou Dou, Haiping Gao, Yongsheng Chen, Xing Xie. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water[J]. Front. Environ. Sci. Eng., 2023, 17(2): 16-.
[9] Xiaoman Liu, Chang Tian, Yanxia Zhao, Weiying Xu, Dehua Dong, Kaimin Shih, Tao Yan, Wen Song. Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control[J]. Front. Environ. Sci. Eng., 2022, 16(8): 110-.
[10] Abdul Halim, Lusi Ernawati, Maya Ismayati, Fahimah Martak, Toshiharu Enomae. Bioinspired cellulose-based membranes in oily wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(7): 94-.
[11] Ying Cai, Jun Wu, Jian Lu, Jianhua Wang, Cui Zhang. Fate of microplastics in a coastal wastewater treatment plant: Microfibers could partially break through the integrated membrane system[J]. Front. Environ. Sci. Eng., 2022, 16(7): 96-.
[12] Jinkai Xue, Seyed Hesam-Aldin Samaei, Jianfei Chen, Ariana Doucet, Kelvin Tsun Wai Ng. What have we known so far about microplastics in drinking water treatment? A timely review[J]. Front. Environ. Sci. Eng., 2022, 16(5): 58-.
[13] Ruobin Dai, Hongyi Han, Yuting Zhu, Xi Wang, Zhiwei Wang. Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds[J]. Front. Environ. Sci. Eng., 2022, 16(4): 40-.
[14] Xuemei Hu, Shijie You, Fang Li, Yanbiao Liu. Recent advances in antimony removal using carbon-based nanomaterials: A review[J]. Front. Environ. Sci. Eng., 2022, 16(4): 48-.
[15] Tingwei Gao, Kang Xiao, Jiao Zhang, Wenchao Xue, Chunhai Wei, Xiaoping Zhang, Shuai Liang, Xiaomao Wang, Xia Huang. Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process[J]. Front. Environ. Sci. Eng., 2022, 16(4): 49-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed