Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (3) : 30    https://doi.org/10.1007/s11783-023-1630-3
RESEARCH ARTICLE
Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment
Shuang Zhang1,2, Shuai Liang1,2(), Yifan Gao3, Yang Wu4, Xia Huang3
1. Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
2. Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
3. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
4. Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
 Download: PDF(10930 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared.

● SACNT membranes achieved smoother and more uniform structures.

● SACNT membranes have inert chemistry and unique nonpolar wetting feature.

● SACNT membranes exhibit superior separation and antifouling capabilities.

● SACNT membranes achieved superior oil/water separation efficiency.

Membrane separation technology has made great progress in various practical applications, but the unsatisfactory separation performance of prevailing membrane materials hampers its further sustainable growth. This study proposed a novel nonpolar super-aligned carbon nanotube (SACNT) membrane, which was prepared with a layer-by-layer cross-stacking method. Through controlling the number of stacked SACNT layers, three kinds of SACNT membranes (SACNT_200, SACNT_300, and SACNT_400) were prepared. Systematic characterizations and filtration tests were performed to investigate their physico-chemical properties, surface wetting behavior, and filtration performance. Compared with two commercial membranes (Com_0.22 and Com_0.45), all the SACNT membranes achieved smoother and more uniform structures. Due to the hexagonal graphene structure of CNTs, the surface chemistry of the SACNT membranes is simple and inert, thereby potentially eliminating the covalent-bonding-induced membrane fouling. Besides, the SACNT membranes exhibited a typical nonpolar wetting behavior, with high contact angles for polar liquids (water: ~124.9°–126.5°; formamide: ~80.0°–83.9°) but low contact angles for nonpolar diiodomethane (~18.8°–20.9°). This unique nonpolar feature potentially leads to weak interactions with polar substances. Furthermore, compared with the commercial membranes, the SACNT membranes obtained a significantly higher selectivity while achieving a comparable or higher permeability (depending on the number of stacked layers). Moreover, the SACNT membranes exhibited superior separation performance in various application scenarios, including municipal wastewater treatment (> 2.3 times higher cleaning efficiency), electro-assistant fouling inhibition (or even self-cleaning), and oil/water separation (> 99.2 % of separation efficiency), suggesting promising application prospects in various fields.

Keywords Membrane fouling      Wastewater      Membrane separation      Antifouling      Aligned carbon nanotube     
Corresponding Author(s): Shuai Liang   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Issue Date: 19 September 2022
 Cite this article:   
Shuang Zhang,Shuai Liang,Yifan Gao, et al. Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment[J]. Front. Environ. Sci. Eng., 2023, 17(3): 30.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1630-3
https://academic.hep.com.cn/fese/EN/Y2023/V17/I3/30
Fig.1  Schematic illustrating the fabrication process of the super-aligned carbon nanotube (SACNT) membrane via a layer-by-layer cross-stacking strategy. Photographs of a prepared flexible and self-supported membrane are included.
Items Component Concentration
Organic (mg/L) Sodium alginate 20
Humic acid 10
Bovine serum albumin 10
Inorganic (mmol/L) CaCl2 1
MgCl2 0.5
NaHCO3 2
NaCl 9
Tab.1  Chemistry of the synthetic municipal wastewater
Fig.2  SEM top views of the (a) SACNT_200, (b) SACNT_300, (c) SACNT_400, (d) Com_0.22 PVDF, and (e) Com_0.45 PVDF membranes. (f) Comparison of elemental compositions among the typical SACNT membrane (taking SACNT_200 as a representative) and commercial membranes.
Fig.3  Surface morphology by AFM of the (a) SACNT_200, (b) SACNT_300, (c) SACNT_400, (d) Com_0.22, and (e) Com_0.45 membranes. (f) Comparison in terms of three surface Roughness parameter (i.e., RRMS, Rmax/10, and Ra) among these membranes.
Fig.4  Comparison of the FTIR spectra among the SACNT_200, SACNT_300, SACNT_400, Com_0.22 PVDF, and Com_0.45 PVDF membranes.
Fig.5  Comparison of surface wetting behavior in terms of static contact angles measured with three different liquids (i.e., DI water, formamide, and diiodomethane) among the SACNT_200, SACNT_300, SACNT_400, Com_0.22, and Com_0.45 membranes.
Fig.6  Comparison of pure water permeability and selectivity in terms of molecular weight cutoff (MWCO) among the SACNT_200, SACNT_300, SACNT_400, Com_0.22, and Com_0.45 membranes.
Fig.7  (a) Comparison of membrane fouling behavior among the SACNT_200, SACNT_300, SACNT_400, and Com_0.22 membranes in the three-cycle filtration tests using the synthetic municipal wastewater (Tab.1). (b) Comparison of calculated cleaning efficiency (η) in the three-cycle filtration tests. (c) Electro-assistant antifouling performance of the SACNT_200 membrane (as a representative). (d) Oil-water separation performance of the SACNT_200 membrane in the three-cycle separation test using oil-in-water emulsion. (e) Calculated separation efficiency in the three-cycle oil-water separation test.
1 E Abaie , L Xu , Y X Shen . (2021). Bioinspired and biomimetic membranes for water purification and chemical separation: a review. Frontiers of Environmental Science & Engineering, 15( 6): 124
https://doi.org/10.1007/s11783-021-1412-8
2 S M Andersen , M Borghei , R Dhiman , V Ruiz , E Kauppinen , E Skou . (2014). Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities. Journal of Physical Chemistry C, 118( 20): 10814– 10823
https://doi.org/10.1021/jp501088d
3 G V Dizon , Y S Lee , A Venault , I V Maggay , Y Chang . (2021). Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process. Journal of Membrane Science, 618 : 118753
https://doi.org/10.1016/j.memsci.2020.118753
4 B J Han, S Liang, B Wang, J Z Zheng, X Xie, K Xiao, X M Wang, X Huang ( 2019). Simultaneous determination of surface energy and roughness of dense membranes by a modified contact angle method. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 562: 370– 376
https://doi.org/10.1016/j.colsurfa.2018.11.059
5 S Hand , R D Cusick . (2021). Electrochemical disinfection in water and wastewater treatment: Identifying impacts of water quality and operating conditions on performance. Environmental Science & Technology, 55( 6): 3470– 3482
https://doi.org/10.1021/acs.est.0c06254 pmid: 33616403
6 Y T Hu , Z H Lu , C Wei , S C Yu , M H Liu , C J Gao . (2018). Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth. Journal of Membrane Science, 545 : 250– 258
https://doi.org/10.1016/j.memsci.2017.09.081
7 Ihsanullah . (2019). Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Separation and Purification Technology, 209 : 307– 337
https://doi.org/10.1016/j.seppur.2018.07.043
8 F C Jia , X Xiao , A Nashalian , S Shen , L Yang , Z Y Han , H J Qu , T M Wang , Z Ye , Z J Zhu , L J Huang , Y X Wang , J G Tang , J Chen . (2022). Advances in graphene oxide membranes for water treatment. Nano Research, 15( 7): 6636– 6654
https://doi.org/10.1007/s12274-022-4273-y
9 J Jiang , B Y Ma , C W Yang , X Y Duan , Q Tang . (2022). Fabrication of anti-fouling and photocleaning PVDF microfiltration membranes embedded with N-TiO2 photocatalysts. Separation and Purification Technology, 298 : 121673
https://doi.org/10.1016/j.seppur.2022.121673
10 J H Lee , H S Kim , E T Yun , S Y Ham , J H Park , C H Ahn , S H Lee , H D Park . (2020). Vertically aligned carbon nanotube membranes: water purification and beyond. Membranes (Basel), 10( 10): 273
https://doi.org/10.3390/membranes10100273 pmid: 33023144
11 M Li , L Wu , C Zhang , W Chen , C Liu . (2019). Hydrophilic and antifouling modification of PVDF membranes by one-step assembly of tannic acid and polyvinylpyrrolidone. Applied Surface Science, 483 : 967– 978
https://doi.org/10.1016/j.apsusc.2019.04.057
12 M Li , K Zuo , S Liang , K Xiao , P Liang , X Wang , X Huang . (2020). Electrically tuning ultrafiltration behavior for efficient water purification. Environmental Science & Technology, 54( 18): 11536– 11545
https://doi.org/10.1021/acs.est.0c02441 pmid: 32841015
13 Y Li , R Gao , J Zhang , Y Zhang , S Liang . (2022). Antifouling conductive composite membrane with reversible wettability for wastewater treatment. Membranes (Basel), 12( 6): 626
https://doi.org/10.3390/membranes12060626 pmid: 35736333
14 Z Li , L Lu . (2022). Wastewater treatment meets artificial photosynthesis: solar to green fuel production, water remediation and carbon emission reduction. Frontiers of Environmental Science & Engineering, 16( 4): 53
https://doi.org/10.1007/s11783-022-1536-5
15 K Liu , Y Sun , P Liu , X Lin , S Fan , K Jiang . (2011). Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Advanced Functional Materials, 21( 14): 2721– 2728
https://doi.org/10.1002/adfm.201100306
16 X Liu , C Tian , Y Zhao , W Xu , D Dong , K Shih , T Yan , W Song . (2022). Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control. Frontiers of Environmental Science & Engineering, 16( 8): 110
https://doi.org/10.1007/s11783-022-1531-x
17 R H Ma , X L Lu , S Z Zhang , K Ren , J Gu , C Liu , Z Q Liu , H L Wang . (2022). Constructing discontinuous silicon-island structure with low surface energy based on the responsiveness of hydrophilic layers to improve the anti-fouling property of membranes. Journal of Membrane Science, 659 : 120770
https://doi.org/10.1016/j.memsci.2022.120770
18 Z Ma , S Liang , S Zhang , K Xiao , X Wang , M Li , X Huang . (2020). Surface functionalization via synergistic grafting of surface-modified silica nanoparticles and layered double hydroxide nanosheets for fabrication of superhydrophilic but relatively oleophobic antifouling membranes. Separation and Purification Technology, 247 : 116955
https://doi.org/10.1016/j.seppur.2020.116955
19 A W Qin , X L Wu , B M Ma , X Z Zhao , C J He . (2014). Enhancing the antifouling property of poly (vinylidene fluoride)/SiO2 hybrid membrane through TIPS method. Journal of Materials Science, 49( 22): 7797– 7808
https://doi.org/10.1007/s10853-014-8490-y
20 M Racar , D Dolar , K Karadakić , N Čavarović , N Glumac , D Ašperger , K Košutić . (2020). Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants. Science of the Total Environment, 722 : 137959
https://doi.org/10.1016/j.scitotenv.2020.137959 pmid: 32208282
21 A Rasekh , A Raisi . (2021). Electrospun nanofibrous polyether-block-amide membrane containing silica nanoparticles for water desalination by vacuum membrane distillation. Separation and Purification Technology, 275 : 119149
https://doi.org/10.1016/j.seppur.2021.119149
22 S M Seyed Shahabadi , J A Brant . (2019). Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Separation and Purification Technology, 210 : 587– 599
https://doi.org/10.1016/j.seppur.2018.08.038
23 Y Shen, K Xiao, P Liang, J Sun, S Sai, X Huang ( 2012). Characterization of soluble microbial products in 10 large-scale membrane bioreactors for municipal wastewater treatment in China. Journal of Membrane Science, 415–416( 0): 336– 345
https://doi.org/10.1016/j.memsci.2012.05.017
24 Z Shi , W Zhang , F Zhang , X Liu , D Wang , J Jin , L Jiang . (2013). Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Advanced Materials, 25( 17): 2422– 2427
https://doi.org/10.1002/adma.201204873 pmid: 23494957
25 B Su , Y Tian , L Jiang . (2016). Bioinspired interfaces with superwettability: from materials to chemistry. Journal of the American Chemical Society, 138( 6): 1727– 1748
https://doi.org/10.1021/jacs.5b12728 pmid: 26652501
26 C Sun , Q Lyu , Y Si , T Tong , L C Lin , F Yang , C Y Tang , Y Dong . (2022a). Superhydrophobic carbon nanotube network membranes for membrane distillation: high-throughput performance and transport mechanism. Environmental Science & Technology, 56( 9): 5775– 5785
https://doi.org/10.1021/acs.est.1c08842 pmid: 35465657
27 F Y Sun , H J Zeng , S Y Tao , Y X Huang , W Y Dong , D Y Xing . (2022b). Nanofiltration membrane fabrication by the introduction of polyhedral oligomeric silsesquioxane nanoparticles: feasibility evaluation and the mechanisms for breaking “trade-off” effect. Desalination, 527 : 115515
https://doi.org/10.1016/j.desal.2021.115515
28 A Tiraferri , Y Kang , E P Giannelis , M Elimelech . (2012). Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environmental Science & Technology, 46( 20): 11135– 11144
https://doi.org/10.1021/es3028617 pmid: 23002900
29 C J van Oss . (2003). Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Journal of Molecular Recognition, 16( 4): 177– 190
https://doi.org/10.1002/jmr.618 pmid: 12898668
30 C J Van Oss ( 2006). Interfacial Forces in Aqueous Media. New York: Taylor & Francis
31 C J van Oss ( 2007). Development and applications of the interfacial tension between water and organic or biological surfaces. Colloids and Surfaces. B, Biointerfaces, 54( 1): 2– 9
https://doi.org/10.1016/j.colsurfb.2006.05.024 pmid: 16842983
32 B Wang , Y Zhang , L Zhang . (2017). Selective surface tension induced patterning on flexible textiles via click chemistry. Nanoscale, 9( 14): 4777– 4786
https://doi.org/10.1039/C7NR00769H pmid: 28338144
33 M Wang , J Wang , J W Jiang . (2022). Membrane fouling: Microscopic insights into the effects of surface chemistry and roughness. Advanced Theory and Simulations, 5( 1): 2100395
https://doi.org/10.1002/adts.202100395
34 R Wang , J Chen , L Chen , Z Ye , C Wu , W Gao , L Xie , Y Ying . (2020). Ultrathin and ultradense aligned carbon nanotube membranes for water purification with enhanced rejection performance. Desalination, 494 : 114671
https://doi.org/10.1016/j.desal.2020.114671
35 Z Wang , M Elimelech , S Lin . (2016). Environmental applications of interfacial materials with special wettability. Environmental Science & Technology, 50( 5): 2132– 2150
https://doi.org/10.1021/acs.est.5b04351 pmid: 26829583
36 H Wei , Y Wei , Y Wu , L Liu , S Fan , K Jiang . (2013). High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. Nano Research, 6( 3): 208– 215
https://doi.org/10.1007/s12274-013-0297-7
37 S Wei , L Du , S Chen , H Yu , X Quan . (2021). Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Frontiers of Environmental Science & Engineering, 15( 1): 11
https://doi.org/10.1007/s11783-020-1303-4
38 K Xiao , S Liang , X Wang , C Chen , X Huang . (2019). Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresource Technology, 271 : 473– 481
https://doi.org/10.1016/j.biortech.2018.09.061 pmid: 30245197
39 S Xiong , X F Qian , Z X Zhong , Y Wang . (2022). Atomic layer deposition for membrane modification, functionalization and preparation: a review. Journal of Membrane Science, 658 : 120740
https://doi.org/10.1016/j.memsci.2022.120740
40 C Q Xu , W Huang , X Lu , D Y Yan , S T Chen , H Huang . (2012). Preparation of PVDF porous membranes by using PVDF-g-PVP powder as an additive and their antifouling property. Radiation Physics and Chemistry, 81( 11): 1763– 1769
https://doi.org/10.1016/j.radphyschem.2012.07.001
41 Y Yang , S Qiao , M Zheng , J Zhou , X Quan . (2019). Enhanced permeability, contaminants removal and antifouling ability of CNTs-based hollow fiber membranes under electrochemical assistance. Journal of Membrane Science, 582 : 335– 341
https://doi.org/10.1016/j.memsci.2019.04.026
42 H Zhang , X Quan , S Chen , H Yu , J Niu . (2020a). Electrokinetic enhancement of water flux and ion rejection through graphene oxide/carbon nanotube membrane. Environmental Science & Technology, 54( 23): 15433– 15441
https://doi.org/10.1021/acs.est.0c05254 pmid: 33196185
43 Z Zhang , S Li , B Mi , J Wang , J Ding . (2020b). Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off. Science Advances, 6( 34): eaba9471
https://doi.org/10.1126/sciadv.aba9471 pmid: 32875107
44 X T Zhao , R N Zhang , Y N Liu , M R He , Y L Su , C J Gao , Z Y Jiang . (2018). Antifouling membrane surface construction: chemistry plays a critical role. Journal of Membrane Science, 551 : 145– 171
https://doi.org/10.1016/j.memsci.2018.01.039
45 Y Zhao , Y Zhao , X Yu , D Kong , X Fan , R Wang , S Luo , D Lu , J Nan , J Ma . (2022). Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: performance evaluation and mechanism analysis. Water Research, 220 : 118710
https://doi.org/10.1016/j.watres.2022.118710 pmid: 35687976
46 K Zhu , Y Luo , F Zhao , J Hou , X Wang , H Ma , H Wu , Y Zhang , K Jiang , S Fan , J Wang , K Liu . (2018). Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chemistry & Engineering, 6( 3): 3426– 3433
https://doi.org/10.1021/acssuschemeng.7b03671
47 Z Zhu , S Zheng , S Peng , Y Zhao , Y Tian . (2017). Superlyophilic interfaces and their applications. Advanced Materials, 29( 45): 1703120
https://doi.org/10.1002/adma.201703120 pmid: 29024052
48 G Zin , J J Wu , K Rezzadori , J C C Petrus , M Di Luccio , Q L Li . (2019). Modification of hydrophobic commercial PVDF microfiltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine. Separation and Purification Technology, 212 : 641– 649
https://doi.org/10.1016/j.seppur.2018.10.014
[1] FSE-22074-OF-ZS_suppl_1 Download
[1] Xiaohua Fu, Qingxing Zheng, Guomin Jiang, Kallol Roy, Lei Huang, Chang Liu, Kun Li, Honglei Chen, Xinyu Song, Jianyu Chen, Zhenxing Wang. Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model[J]. Front. Environ. Sci. Eng., 2023, 17(8): 98-.
[2] Pelin Koyuncuoğlu, Gülbin Erden. Microplastics in municipal wastewater treatment plants: a case study of Denizli/Turkey[J]. Front. Environ. Sci. Eng., 2023, 17(8): 99-.
[3] Guannan Mao, Donglin Wang, Yaohui Bai, Jiuhui Qu. Mitigating microbiological risks of potential pathogens carrying antibiotic resistance genes and virulence factors in receiving rivers: Benefits of wastewater treatment plant upgrade[J]. Front. Environ. Sci. Eng., 2023, 17(7): 82-.
[4] Zhicheng Liao, Bei Li, Juhong Zhan, Huan He, Xiaoxia Yang, Dongxu Zhou, Guoxi Yu, Chaochao Lai, Bin Huan, Xuejun Pan. Photosensitivity sources of dissolved organic matter from wastewater treatment plants and their mediation effect on 17α-ethinylestradiol photodegradation[J]. Front. Environ. Sci. Eng., 2023, 17(6): 69-.
[5] Mourin Jarin, Zeou Dou, Haiping Gao, Yongsheng Chen, Xing Xie. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water[J]. Front. Environ. Sci. Eng., 2023, 17(2): 16-.
[6] Yabing Meng, Depeng Wang, Zhong Yu, Qingyun Yan, Zhili He, Fangang Meng. Genome-resolved metagenomic analysis reveals different functional potentials of multiple Candidatus Brocadia species in a full-scale swine wastewater treatment system[J]. Front. Environ. Sci. Eng., 2023, 17(1): 2-.
[7] Shaoping Luo, Yi Peng, Ying Liu, Yongzhen Peng. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(9): 123-.
[8] Runyao Huang, Jin Xu, Li Xie, Hongtao Wang, Xiaohang Ni. Energy neutrality potential of wastewater treatment plants: A novel evaluation framework integrating energy efficiency and recovery[J]. Front. Environ. Sci. Eng., 2022, 16(9): 117-.
[9] Xiaoman Liu, Chang Tian, Yanxia Zhao, Weiying Xu, Dehua Dong, Kaimin Shih, Tao Yan, Wen Song. Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control[J]. Front. Environ. Sci. Eng., 2022, 16(8): 110-.
[10] Yan Guo, Zibin Luo, Junhao Shen, Yu-You Li. The main anammox-based processes, the involved microbes and the novel process concept from the application perspective[J]. Front. Environ. Sci. Eng., 2022, 16(7): 84-.
[11] Jibin Li, Jinxing Ma, Li Sun, Xin Liu, Huaiyu Liao, Di He. Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD) for decentralized wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(7): 86-.
[12] Quanli Man, Peilian Zhang, Weiqi Huang, Qing Zhu, Xiaoling He, Dongsheng Wei. A heterotrophic nitrification-aerobic denitrification bacterium Halomonas venusta TJPU05 suitable for nitrogen removal from high-salinity wastewater[J]. Front. Environ. Sci. Eng., 2022, 16(6): 69-.
[13] Xiaoyuan Zhang, Jun Gu, Shujuan Meng, Yu Liu. Dissolved methane in anaerobic effluent: Emission or recovery?[J]. Front. Environ. Sci. Eng., 2022, 16(4): 54-.
[14] Xuemei Hu, Shijie You, Fang Li, Yanbiao Liu. Recent advances in antimony removal using carbon-based nanomaterials: A review[J]. Front. Environ. Sci. Eng., 2022, 16(4): 48-.
[15] Jun Li, Aimin Li, Yan Li, Minhui Cai, Gan Luo, Yaping Wu, Yechao Tian, Liqun Xing, Quanxing Zhang. PICRUSt2 functionally predicts organic compounds degradation and sulfate reduction pathways in an acidogenic bioreactor[J]. Front. Environ. Sci. Eng., 2022, 16(4): 47-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed