|
|
Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment |
Shuang Zhang1,2, Shuai Liang1,2( ), Yifan Gao3, Yang Wu4, Xia Huang3 |
1. Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China 2. Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China 3. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China 4. Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China |
|
|
Abstract ● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared. ● SACNT membranes achieved smoother and more uniform structures. ● SACNT membranes have inert chemistry and unique nonpolar wetting feature. ● SACNT membranes exhibit superior separation and antifouling capabilities. ● SACNT membranes achieved superior oil/water separation efficiency. Membrane separation technology has made great progress in various practical applications, but the unsatisfactory separation performance of prevailing membrane materials hampers its further sustainable growth. This study proposed a novel nonpolar super-aligned carbon nanotube (SACNT) membrane, which was prepared with a layer-by-layer cross-stacking method. Through controlling the number of stacked SACNT layers, three kinds of SACNT membranes (SACNT_200, SACNT_300, and SACNT_400) were prepared. Systematic characterizations and filtration tests were performed to investigate their physico-chemical properties, surface wetting behavior, and filtration performance. Compared with two commercial membranes (Com_0.22 and Com_0.45), all the SACNT membranes achieved smoother and more uniform structures. Due to the hexagonal graphene structure of CNTs, the surface chemistry of the SACNT membranes is simple and inert, thereby potentially eliminating the covalent-bonding-induced membrane fouling. Besides, the SACNT membranes exhibited a typical nonpolar wetting behavior, with high contact angles for polar liquids (water: ~124.9°–126.5°; formamide: ~80.0°–83.9°) but low contact angles for nonpolar diiodomethane (~18.8°–20.9°). This unique nonpolar feature potentially leads to weak interactions with polar substances. Furthermore, compared with the commercial membranes, the SACNT membranes obtained a significantly higher selectivity while achieving a comparable or higher permeability (depending on the number of stacked layers). Moreover, the SACNT membranes exhibited superior separation performance in various application scenarios, including municipal wastewater treatment (> 2.3 times higher cleaning efficiency), electro-assistant fouling inhibition (or even self-cleaning), and oil/water separation (> 99.2 % of separation efficiency), suggesting promising application prospects in various fields.
|
Keywords
Membrane fouling
Wastewater
Membrane separation
Antifouling
Aligned carbon nanotube
|
Corresponding Author(s):
Shuai Liang
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 19 September 2022
|
|
1 |
E Abaie , L Xu , Y X Shen . (2021). Bioinspired and biomimetic membranes for water purification and chemical separation: a review. Frontiers of Environmental Science & Engineering, 15( 6): 124
https://doi.org/10.1007/s11783-021-1412-8
|
2 |
S M Andersen , M Borghei , R Dhiman , V Ruiz , E Kauppinen , E Skou . (2014). Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities. Journal of Physical Chemistry C, 118( 20): 10814– 10823
https://doi.org/10.1021/jp501088d
|
3 |
G V Dizon , Y S Lee , A Venault , I V Maggay , Y Chang . (2021). Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process. Journal of Membrane Science, 618 : 118753
https://doi.org/10.1016/j.memsci.2020.118753
|
4 |
B J Han, S Liang, B Wang, J Z Zheng, X Xie, K Xiao, X M Wang, X Huang ( 2019). Simultaneous determination of surface energy and roughness of dense membranes by a modified contact angle method. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 562: 370– 376
https://doi.org/10.1016/j.colsurfa.2018.11.059
|
5 |
S Hand , R D Cusick . (2021). Electrochemical disinfection in water and wastewater treatment: Identifying impacts of water quality and operating conditions on performance. Environmental Science & Technology, 55( 6): 3470– 3482
https://doi.org/10.1021/acs.est.0c06254
pmid: 33616403
|
6 |
Y T Hu , Z H Lu , C Wei , S C Yu , M H Liu , C J Gao . (2018). Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth. Journal of Membrane Science, 545 : 250– 258
https://doi.org/10.1016/j.memsci.2017.09.081
|
7 |
Ihsanullah . (2019). Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Separation and Purification Technology, 209 : 307– 337
https://doi.org/10.1016/j.seppur.2018.07.043
|
8 |
F C Jia , X Xiao , A Nashalian , S Shen , L Yang , Z Y Han , H J Qu , T M Wang , Z Ye , Z J Zhu , L J Huang , Y X Wang , J G Tang , J Chen . (2022). Advances in graphene oxide membranes for water treatment. Nano Research, 15( 7): 6636– 6654
https://doi.org/10.1007/s12274-022-4273-y
|
9 |
J Jiang , B Y Ma , C W Yang , X Y Duan , Q Tang . (2022). Fabrication of anti-fouling and photocleaning PVDF microfiltration membranes embedded with N-TiO2 photocatalysts. Separation and Purification Technology, 298 : 121673
https://doi.org/10.1016/j.seppur.2022.121673
|
10 |
J H Lee , H S Kim , E T Yun , S Y Ham , J H Park , C H Ahn , S H Lee , H D Park . (2020). Vertically aligned carbon nanotube membranes: water purification and beyond. Membranes (Basel), 10( 10): 273
https://doi.org/10.3390/membranes10100273
pmid: 33023144
|
11 |
M Li , L Wu , C Zhang , W Chen , C Liu . (2019). Hydrophilic and antifouling modification of PVDF membranes by one-step assembly of tannic acid and polyvinylpyrrolidone. Applied Surface Science, 483 : 967– 978
https://doi.org/10.1016/j.apsusc.2019.04.057
|
12 |
M Li , K Zuo , S Liang , K Xiao , P Liang , X Wang , X Huang . (2020). Electrically tuning ultrafiltration behavior for efficient water purification. Environmental Science & Technology, 54( 18): 11536– 11545
https://doi.org/10.1021/acs.est.0c02441
pmid: 32841015
|
13 |
Y Li , R Gao , J Zhang , Y Zhang , S Liang . (2022). Antifouling conductive composite membrane with reversible wettability for wastewater treatment. Membranes (Basel), 12( 6): 626
https://doi.org/10.3390/membranes12060626
pmid: 35736333
|
14 |
Z Li , L Lu . (2022). Wastewater treatment meets artificial photosynthesis: solar to green fuel production, water remediation and carbon emission reduction. Frontiers of Environmental Science & Engineering, 16( 4): 53
https://doi.org/10.1007/s11783-022-1536-5
|
15 |
K Liu , Y Sun , P Liu , X Lin , S Fan , K Jiang . (2011). Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Advanced Functional Materials, 21( 14): 2721– 2728
https://doi.org/10.1002/adfm.201100306
|
16 |
X Liu , C Tian , Y Zhao , W Xu , D Dong , K Shih , T Yan , W Song . (2022). Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control. Frontiers of Environmental Science & Engineering, 16( 8): 110
https://doi.org/10.1007/s11783-022-1531-x
|
17 |
R H Ma , X L Lu , S Z Zhang , K Ren , J Gu , C Liu , Z Q Liu , H L Wang . (2022). Constructing discontinuous silicon-island structure with low surface energy based on the responsiveness of hydrophilic layers to improve the anti-fouling property of membranes. Journal of Membrane Science, 659 : 120770
https://doi.org/10.1016/j.memsci.2022.120770
|
18 |
Z Ma , S Liang , S Zhang , K Xiao , X Wang , M Li , X Huang . (2020). Surface functionalization via synergistic grafting of surface-modified silica nanoparticles and layered double hydroxide nanosheets for fabrication of superhydrophilic but relatively oleophobic antifouling membranes. Separation and Purification Technology, 247 : 116955
https://doi.org/10.1016/j.seppur.2020.116955
|
19 |
A W Qin , X L Wu , B M Ma , X Z Zhao , C J He . (2014). Enhancing the antifouling property of poly (vinylidene fluoride)/SiO2 hybrid membrane through TIPS method. Journal of Materials Science, 49( 22): 7797– 7808
https://doi.org/10.1007/s10853-014-8490-y
|
20 |
M Racar , D Dolar , K Karadakić , N Čavarović , N Glumac , D Ašperger , K Košutić . (2020). Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants. Science of the Total Environment, 722 : 137959
https://doi.org/10.1016/j.scitotenv.2020.137959
pmid: 32208282
|
21 |
A Rasekh , A Raisi . (2021). Electrospun nanofibrous polyether-block-amide membrane containing silica nanoparticles for water desalination by vacuum membrane distillation. Separation and Purification Technology, 275 : 119149
https://doi.org/10.1016/j.seppur.2021.119149
|
22 |
S M Seyed Shahabadi , J A Brant . (2019). Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Separation and Purification Technology, 210 : 587– 599
https://doi.org/10.1016/j.seppur.2018.08.038
|
23 |
Y Shen, K Xiao, P Liang, J Sun, S Sai, X Huang ( 2012). Characterization of soluble microbial products in 10 large-scale membrane bioreactors for municipal wastewater treatment in China. Journal of Membrane Science, 415–416( 0): 336– 345
https://doi.org/10.1016/j.memsci.2012.05.017
|
24 |
Z Shi , W Zhang , F Zhang , X Liu , D Wang , J Jin , L Jiang . (2013). Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Advanced Materials, 25( 17): 2422– 2427
https://doi.org/10.1002/adma.201204873
pmid: 23494957
|
25 |
B Su , Y Tian , L Jiang . (2016). Bioinspired interfaces with superwettability: from materials to chemistry. Journal of the American Chemical Society, 138( 6): 1727– 1748
https://doi.org/10.1021/jacs.5b12728
pmid: 26652501
|
26 |
C Sun , Q Lyu , Y Si , T Tong , L C Lin , F Yang , C Y Tang , Y Dong . (2022a). Superhydrophobic carbon nanotube network membranes for membrane distillation: high-throughput performance and transport mechanism. Environmental Science & Technology, 56( 9): 5775– 5785
https://doi.org/10.1021/acs.est.1c08842
pmid: 35465657
|
27 |
F Y Sun , H J Zeng , S Y Tao , Y X Huang , W Y Dong , D Y Xing . (2022b). Nanofiltration membrane fabrication by the introduction of polyhedral oligomeric silsesquioxane nanoparticles: feasibility evaluation and the mechanisms for breaking “trade-off” effect. Desalination, 527 : 115515
https://doi.org/10.1016/j.desal.2021.115515
|
28 |
A Tiraferri , Y Kang , E P Giannelis , M Elimelech . (2012). Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environmental Science & Technology, 46( 20): 11135– 11144
https://doi.org/10.1021/es3028617
pmid: 23002900
|
29 |
C J van Oss . (2003). Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Journal of Molecular Recognition, 16( 4): 177– 190
https://doi.org/10.1002/jmr.618
pmid: 12898668
|
30 |
C J Van Oss ( 2006). Interfacial Forces in Aqueous Media. New York: Taylor & Francis
|
31 |
C J van Oss ( 2007). Development and applications of the interfacial tension between water and organic or biological surfaces. Colloids and Surfaces. B, Biointerfaces, 54( 1): 2– 9
https://doi.org/10.1016/j.colsurfb.2006.05.024
pmid: 16842983
|
32 |
B Wang , Y Zhang , L Zhang . (2017). Selective surface tension induced patterning on flexible textiles via click chemistry. Nanoscale, 9( 14): 4777– 4786
https://doi.org/10.1039/C7NR00769H
pmid: 28338144
|
33 |
M Wang , J Wang , J W Jiang . (2022). Membrane fouling: Microscopic insights into the effects of surface chemistry and roughness. Advanced Theory and Simulations, 5( 1): 2100395
https://doi.org/10.1002/adts.202100395
|
34 |
R Wang , J Chen , L Chen , Z Ye , C Wu , W Gao , L Xie , Y Ying . (2020). Ultrathin and ultradense aligned carbon nanotube membranes for water purification with enhanced rejection performance. Desalination, 494 : 114671
https://doi.org/10.1016/j.desal.2020.114671
|
35 |
Z Wang , M Elimelech , S Lin . (2016). Environmental applications of interfacial materials with special wettability. Environmental Science & Technology, 50( 5): 2132– 2150
https://doi.org/10.1021/acs.est.5b04351
pmid: 26829583
|
36 |
H Wei , Y Wei , Y Wu , L Liu , S Fan , K Jiang . (2013). High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. Nano Research, 6( 3): 208– 215
https://doi.org/10.1007/s12274-013-0297-7
|
37 |
S Wei , L Du , S Chen , H Yu , X Quan . (2021). Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Frontiers of Environmental Science & Engineering, 15( 1): 11
https://doi.org/10.1007/s11783-020-1303-4
|
38 |
K Xiao , S Liang , X Wang , C Chen , X Huang . (2019). Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresource Technology, 271 : 473– 481
https://doi.org/10.1016/j.biortech.2018.09.061
pmid: 30245197
|
39 |
S Xiong , X F Qian , Z X Zhong , Y Wang . (2022). Atomic layer deposition for membrane modification, functionalization and preparation: a review. Journal of Membrane Science, 658 : 120740
https://doi.org/10.1016/j.memsci.2022.120740
|
40 |
C Q Xu , W Huang , X Lu , D Y Yan , S T Chen , H Huang . (2012). Preparation of PVDF porous membranes by using PVDF-g-PVP powder as an additive and their antifouling property. Radiation Physics and Chemistry, 81( 11): 1763– 1769
https://doi.org/10.1016/j.radphyschem.2012.07.001
|
41 |
Y Yang , S Qiao , M Zheng , J Zhou , X Quan . (2019). Enhanced permeability, contaminants removal and antifouling ability of CNTs-based hollow fiber membranes under electrochemical assistance. Journal of Membrane Science, 582 : 335– 341
https://doi.org/10.1016/j.memsci.2019.04.026
|
42 |
H Zhang , X Quan , S Chen , H Yu , J Niu . (2020a). Electrokinetic enhancement of water flux and ion rejection through graphene oxide/carbon nanotube membrane. Environmental Science & Technology, 54( 23): 15433– 15441
https://doi.org/10.1021/acs.est.0c05254
pmid: 33196185
|
43 |
Z Zhang , S Li , B Mi , J Wang , J Ding . (2020b). Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off. Science Advances, 6( 34): eaba9471
https://doi.org/10.1126/sciadv.aba9471
pmid: 32875107
|
44 |
X T Zhao , R N Zhang , Y N Liu , M R He , Y L Su , C J Gao , Z Y Jiang . (2018). Antifouling membrane surface construction: chemistry plays a critical role. Journal of Membrane Science, 551 : 145– 171
https://doi.org/10.1016/j.memsci.2018.01.039
|
45 |
Y Zhao , Y Zhao , X Yu , D Kong , X Fan , R Wang , S Luo , D Lu , J Nan , J Ma . (2022). Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: performance evaluation and mechanism analysis. Water Research, 220 : 118710
https://doi.org/10.1016/j.watres.2022.118710
pmid: 35687976
|
46 |
K Zhu , Y Luo , F Zhao , J Hou , X Wang , H Ma , H Wu , Y Zhang , K Jiang , S Fan , J Wang , K Liu . (2018). Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chemistry & Engineering, 6( 3): 3426– 3433
https://doi.org/10.1021/acssuschemeng.7b03671
|
47 |
Z Zhu , S Zheng , S Peng , Y Zhao , Y Tian . (2017). Superlyophilic interfaces and their applications. Advanced Materials, 29( 45): 1703120
https://doi.org/10.1002/adma.201703120
pmid: 29024052
|
48 |
G Zin , J J Wu , K Rezzadori , J C C Petrus , M Di Luccio , Q L Li . (2019). Modification of hydrophobic commercial PVDF microfiltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine. Separation and Purification Technology, 212 : 641– 649
https://doi.org/10.1016/j.seppur.2018.10.014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|