Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (4) : 526-532    https://doi.org/10.1007/s11783-010-0261-7
RESEARCH ARTICLE
Microcystin-LR biodegradation by Sphingopyxis sp. USTB-05
Chengbin XIAO1, Hai YAN2(), Junfeng WANG2, Wei WEI2, Jun NING1, Gang PAN1
1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
 Download: PDF(315 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A promising bacterial strain for biodegrading microcystin-LR (MC-LR) as the sole carbon and nitrogen source was successfully isolated from Lake Dianchi, China. The strain was identified as Sphingopyxis sp. USTB-05, which was the first isolated MCs-biodegrading Sphingopyxis sp. in China. The average biodegradation rate of MC-LR by Sphingopyxis sp. USTB-05 was 28.8 mg·L-1 per day, which was apparently higher than those of other bacteria reported so far. The optimal temperature and pH for both strain USTB-05 growth and MC-LR biodegradation were 30°C and 7.0, respectively. The release of MC-LR from the cyanobacterial cells collected from Lake Guishui and the biodegradation of MC-LR by both strain and cell-free extract (CE) were investigated. The results indicated that MC-LR with the initial concentration of 4.0 mg·L-1 in water was biodegraded by Sphingopyxis sp. USTB-05 within 4 d, while MC-LR with the initial concentration of 28.8 mg·L-1 could be completely removed in 3 h by CE of Sphingopyxis sp. USTB-05 containing 350 mg·L-1 protein. During enzymatic biodegradation of MC-LR, two intermediate metabolites and a dead-end product were observed on an HPLC chromatogram. Moreover, the similar scanning profiles of MC-LR and its metabolic products indicate that the Adda side-chain of MC-LR was kept intact in all products.

Keywords microcystin-LR(MC-LR)      biodegradation      Sphingopyxis sp      USTB-05      cell-free extract     
Corresponding Author(s): YAN Hai,Email:haiyan@ustb.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Chengbin XIAO,Hai YAN,Junfeng WANG, et al. Microcystin-LR biodegradation by Sphingopyxis sp. USTB-05[J]. Front Envir Sci Eng Chin, 2011, 5(4): 526-532.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0261-7
https://academic.hep.com.cn/fese/EN/Y2011/V5/I4/526
Fig.1  Colonies of strain USTB-05 grown on solid medium
Fig.2  Cell shape of strain USTB-05 under microscope (× 1000)
Fig.3  Phylogenetic tree of sp. USTB-05
Fig.4  Growth of sp. USTB-05 and biodegradation of MC-LR
Fig.5  Effects of pH (a) and temperature (b) on the biodegradation of MC-LR
Fig.6  Biodegradation of MC-LR remained in water and released from cyanobacterial cells collected from Lake Guishui by sp. USTB-05
Fig.7  Biodegradation of MC-LR by CE of sp. USTB-05 with different protein concentrations
Fig.8  HPLC profiles for biodegrading MC-LR by CE of sp. USTB-05 with time course. (a) 0 min; (b) 90 min; (c) 180 min; (d) 720 min
Fig.9  Absorbance profiles of MC-LR and its biodegradation products in the ultraviolet wavelength from 200 to 300 nm, respectively
1 Dawson R M. The toxicology of microcystins. Toxicon , 1998, 36(7): 953–962
doi: 10.1016/S0041-0101(97)00102-5
2 Kaebernick M, Neilan B A. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology , 2001, 35(1): 1–9
doi: 10.1111/j.1574-6941.2001.tb00782.x
3 Haider S, Naithani V, Viswanathan P N, Kakkar P. Cyanobacterial toxins: a growing environmental concern. Chemosphere , 2003, 52(1): 1–21
doi: 10.1016/S0045-6535(03)00032-8
4 Zhang W H, Xu X Q, Qiu C Q. Advance in study on microcystins in aquatic environment.Research of Environmental Sciences, 2001, 14(2): 57–61 (in Chinese)
5 Duy T N, Lam P K S, Shaw G R, Connell D W. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Reviews of Environmental Contamination and Toxicology , 2000, 163: 113–185
6 Yan H, Pan G, Zou H, Li X L, Chen H. Effective removal of microcystins using carbon nanotubes embedded with bacteria. Chinese Science Bulletin , 2004, 49(16): 1694–1698
7 Bourne D G, Jones G J, Blakeley R L, Jones A, Negri A P, Riddles P. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Applied and Environmental Microbiology , 1996, 62(11): 4086–4094
8 Ho L, Gaudieux A L, Fanok S, Newcombe G, Humpage A R. Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity. Toxicon , 2007, 50(3): 438–441
doi: 10.1016/j.toxicon.2007.03.021
9 Qiao R P, Li N, Qi X H, Wang Q S, Zhuang Y Y. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon , 2005, 45(6): 745–752
doi: 10.1016/j.toxicon.2005.01.012
10 Cousins I T, Bealing D J, James H A, Sutton A. Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Research , 1996, 30(2): 481–485
doi: 10.1016/0043-1354(95)00189-1
11 Ho L, Meyn T, Keegan A, Hoefel D, Brookes J, Saint C P, Newcombe G. Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Research , 2006, 40(4): 768–774
doi: 10.1016/j.watres.2005.12.009
12 Bourne D G, Blakeley R L, Riddles P, Jones G J. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Research , 2006, 40(6): 1294–1302
doi: 10.1016/j.watres.2006.01.022
13 Zhang J B, Zheng Z, Yang G J, Zhao Y F. Degradation of microcystin by gamma irradiation. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment , 2007, 580(1): 687–689
doi: 10.1016/j.nima.2007.05.109
14 Welker M, Steinberg C. Rates of humic substance photosensitized degradation of microcystin-LR in natural waters. Environmental Science & Technology , 2000, 34(16): 3415–3419
doi: 10.1021/es991274t
15 Harada K, Imanishi S, Kato H, Mizuno M, Ito E, Tsuji K. Isolation of Adda from microcystin-LR by microbial degradation. Toxicon , 2004, 44(1): 107–109
doi: 10.1016/j.toxicon.2004.04.003
16 Falconer I R. An overview of problems caused by toxic blue–green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology , 1999, 14(1): 5–12
doi: 10.1002/(SICI)1522-7278(199902)14:1<5::AID-TOX3>3.0.CO;2-0
17 Yan H, Gong A J, He H S, Zhou J, Wei Y, Lv L. Adsorption of microcystins by carbon nanotubes. Chemosphere , 2006, 62(1): 142–148
doi: 10.1016/j.chemosphere.2005.03.075
18 Svrcek C, Smith D W. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. Journal of Environmental Engineering and Science , 2004, 3(3): 155–185
doi: 10.1139/s04-010
19 Feng C, Sugiura N, Masaoka Y, Maekawa T. Electrochemical Degradation of Microcystin-LR. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng. 2005, 40(2): 453–465
doi: 10.1081/ESE-200045648
20 Jones G J, Bourne D G, Blakeley R L, Doelle H. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Natural Toxins , 1994, 2(4): 228–235
doi: 10.1002/nt.2620020412
21 Valeria A M, Ricardo E J, Stephan P, Alberto W D. Degradation of Microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba- Argentina). Biodegradation , 2006, 17(5): 447–455
doi: 10.1007/s10532-005-9015-9
22 Lemes G A F, Kersanach R, Pinto Lda S, Dellagostin O A, Yunes J S, Matthiensen A. Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotoxicology and Environmental Safety , 2008, 69(3): 358–365
doi: 10.1016/j.ecoenv.2007.03.013
23 Takenaka S, Watanabe M F. Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease. Chemosphere , 1997, 34(4): 749–757
doi: 10.1016/S0045-6535(97)00002-7
24 Park H D, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environmental Toxicology , 2001, 16(4): 337–343
doi: 10.1002/tox.1041
25 Lam A K Y, Fedorak P M, Prepas E E. Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and protein phosphatase bioassay. Environmental Science & Technology , 1995, 29(1): 242–246
doi: 10.1021/es00001a030
26 Edwards C, Graham D, Fowler N, Lawton L A. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere , 2008, 73(8): 1315–1321
doi: 10.1016/j.chemosphere.2008.07.015
27 Holst T, J?rgensen N O G, J?rgensen C, Johansen A. Degradation of microcystin in sediments at oxic and anoxic, denitrifying conditions. Water Research , 2003, 37(19): 4748–4760
doi: 10.1016/S0043-1354(03)00413-5
28 Chen X G, Yang X, Yang L, Xiao B, Wu X, Wang J, Wan H. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water Research , 2010, 44(6): 1884–1892
doi: 10.1016/j.watres.2009.11.025
29 Hashimoto E H, Kato H, Kawasaki Y, Nozawa Y, Tsuji K, Hirooka E Y, Harada K. Further investigation of microbial degradation of microcystin using the advanced Marfey method. Chemical Research in Toxicology , 2009, 22(2): 391–398
doi: 10.1021/tx8003517
30 Ishii H, Nishijima M, Abe T. Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Research , 2004, 38(11): 2667–2676
doi: 10.1016/j.watres.2004.03.014
31 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 1976, 72(1-2): 248–254
doi: 10.1016/0003-2697(76)90527-3
[1] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[2] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[3] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[4] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[5] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[6] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[7] Qinqin Liu, Miao Li, Xiang Liu, Quan Zhang, Rui Liu, Zhenglu Wang, Xueting Shi, Jin Quan, Xuhui Shen, Fawang Zhang. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism[J]. Front. Environ. Sci. Eng., 2018, 12(6): 6-.
[8] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[9] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[10] Wei-Min Wu,Jun Yang,Craig S. Criddle. Microplastics pollution and reduction strategies[J]. Front. Environ. Sci. Eng., 2017, 11(1): 6-.
[11] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[12] Ning YAN,Lu WANG,Ling CHANG,Cuiyi ZHANG,Yang ZHOU,Yongming ZHANG,Bruce E. RITTMANN. Coupled aerobic and anoxic biodegradation for quinoline and nitrogen removals[J]. Front. Environ. Sci. Eng., 2015, 9(4): 738-744.
[13] ZHANG Dong,ZHU Lizhong. Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process[J]. Front.Environ.Sci.Eng., 2014, 8(3): 305-315.
[14] Rongfang YUAN, Beihai ZHOU, Chunhong SHI, Liying YU, Chunlei ZHANG, Junnong GU. Biodegradation of 2-methylisoborneol by bacteria enriched from biological activated carbon[J]. Front Envir Sci Eng, 2012, 6(5): 701-710.
[15] Zhenyi ZHANG, Chihiro INOUE, Guanghe LI, . Impact of solids on biphasic biodegradation of phenanthrene in the presence of hydroxypropyl- β -cyclodextrin (HPCD)[J]. Front.Environ.Sci.Eng., 2010, 4(3): 329-333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed