Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (3) : 313-319    https://doi.org/10.1007/s11783-011-0323-5
RESEARCH ARTICLE
Gold modified microelectrode for direct tetracycline detection
Hongtao WANG, Huimin ZHAO, Xie QUAN()
Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
 Download: PDF(499 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The residues of tetracycline antibiotics in water have attracted many concerns due to their harmful impact to human health. This paper reports an electrochemical sensor for the determination of tetracycline (TC) by the microelectrode, which was fabricated by electrodeposited gold colloids on tungsten tip. Cyclic voltammerty was used to study the electrochemical behavior of TC on the microelectrode. Well anodic wave was obtained at about 1.5 V in acidic solutions. Electrochemical determination of tetracycline was investigated using microelectrode by cyclic voltammetry. Under optimized conditions, the calibration curves for TC were obtained. The oxidation peak currents were linearly related to TC concentrations in the range of 1–10 mg·L-1 and 10–100 mg·L-1, respectively. The detection limit was 0.09 mg·L-1 (S/N = 3).

Keywords microelectrode      tungsten tip      gold colloids      tetracycline     
Corresponding Author(s): QUAN Xie,Email:quanxie@dlut.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Hongtao WANG,Huimin ZHAO,Xie QUAN. Gold modified microelectrode for direct tetracycline detection[J]. Front Envir Sci Eng, 2012, 6(3): 313-319.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0323-5
https://academic.hep.com.cn/fese/EN/Y2012/V6/I3/313
Fig.1  Structure of tetracycline used in this study
Fig.2  Environmental scanning electron microscope (ESEM) images of electrochemically etched W tip (a) and its magnified apex region in a side view (b)
Fig.3  ESEM images of electrodeposited gold colloids at tungsten tip by CV through one cycle (a), three cycles (b), and five cycles (c), and corresponding CV curves from -1.0-0.5 V at a scan rate 50 mV·s in 5 mmol·L HAuCl containing 0.01 mol·L HSO and 0.02 mol·L NaSO
Fig.4  Typical ESEM images of the microelectrode. The electrodeposition conditions as showed in Fig. 3 with three cycles
Fig.5  Cyclic voltammograms of 100 mg·L TC at GME in different electrolyte. Scan rate: 100 mV·s
Fig.6  Cyclic voltammograms of 100 mg·L TC at GME in different concentration of HSO (a). p and p vs. concentration of HSO (b) with scan rate of 100 mV·s
Fig.7  Cyclic voltammograms of GME for 100 mg·L TC in 0.1 mol·L HSO at different scan rates: 10, 30, 50, 70, 100, 150, 200, and 300 mV·s (a–h) (a), and the plot of anodic and cathodic peak currents vs. square root of scan rate () (b)
Fig.8  Cyclic voltammograms of GME for different concentration of TC in 0.1 mol·L HSO at scan rates of 100 mV·s (a), and linear relationship between oxidation peak currents and TC concentration (b)
1 Wittstock G, Gründig B, Strehlitz B, Zimmer K. Evaluation of microelectrode arrays for amperometric detection by scanning electrochemical microscopy. Electroanalysis , 1998, 10(8): 526–531
doi: 10.1002/(SICI)1521-4109(199807)10:8<526::AID-ELAN526>3.0.CO;2-7
2 Dong H, Wang S H, Liu A H, Galligan J J, Swain G M. Drug effects on the electrochemical detection of norepinephrine with carbon fiber and diamond microelectrodes. Journal of Electroanalytical Chemistry , 2009, 632(1-2): 20–29
doi: 10.1016/j.jelechem.2009.03.022
3 Wang R H, Dong W, Ruan C, Kanayeva D, Tian R, Lassiter K, Li Y. TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Letters , 2008, 8(9): 2625–2631
doi: 10.1021/nl080366q pmid:18715043
4 Liu S Y, Liu G, Tian Y C, Chen Y P, Yu H Q, Fang F. An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distributions in aerobic granules. Environmental Science & Technology , 2007, 41(15): 5447–5452
doi: 10.1021/es070532g pmid:17822115
5 Lee M T B, Seliskar C J, Heineman W R, McGoron A J. Microelectrode sensors for in vivo detection of radiopharmaceuticals. Journal of the American Chemical Society , 1997, 119(27): 6434–6435
doi: 10.1021/ja964463+
6 Lin Z, Takahashi Y, Kitagawa Y, Umemura T, Shiku H, Matsue T. An addressable microelectrode array for electrochemical detection. Analytical Chemistry , 2008, 80(17): 6830–6833
doi: 10.1021/ac801389d pmid:18665613
7 Suzuki A, Ivandini T A, Yoshimi K, Fujishima A, Oyama G, Nakazato T, Hattori N, Kitazawa S, Einaga Y. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Analytical Chemistry , 2007, 79(22): 8608–8615
doi: 10.1021/ac071519h pmid:17918970
8 Orozco J, Jiménez-Jorquera C, Fernández-Sánchez C. Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: a comparative assessment. Bioelectrochemistry (Amsterdam, Netherlands) , 2009, 75(2): 176–181
pmid:19401273
9 Woo D H, Kang H, Park S M. Fabrication of nanoscale gold disk electrodes using ultrashort pulse etching. Analytical Chemistry , 2003, 75(23): 6732–6736
doi: 10.1021/ac034584+ pmid:16465723
10 Matos R C, Augelli M A, Lago C L, Angnes L. Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium. Analytica Chimica Acta , 2000, 404(1): 151–157
doi: 10.1016/S0003-2670(99)00674-1
11 Hernández-Santos D, Gonzalez-Garcia M B, Garcia A C. Metal-nanoparticles based electroanalysis. Electroanalysis , 2002, 14(18): 1225–1235
doi: 10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z
12 Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis , 2004, 16(12): 19–44
doi: 10.1002/elan.200302930
13 Zhang G X, Liu X T, Sun K, Zhao Y, Lin C Y. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils. Frontiers of Environmental Science & Engineering in China , 2010, 4(4): 421–429
doi: 10.1007/s11783-010-0265-3
14 Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere , 2000, 40(7): 751–757
doi: 10.1016/S0045-6535(99)00449-X pmid:10705553
15 Richardson B J, Lam P K, Martin M. Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Marine Pollution Bulletin , 2005, 50(9): 913–920
doi: 10.1016/j.marpolbul.2005.06.034 pmid:16038943
16 Pellinen T, Bylund G, Virta M, Niemi A, Karp M. Detection of traces of tetracyclines from fish with a bioluminescent sensor strain incorporating bacterial luciferase reporter genes. Journal of Agricultural and Food Chemistry , 2002, 50(17): 4812–4815
doi: 10.1021/jf020402l pmid:12166964
17 Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography. A , 2000, 882(1-2): 109–133
doi: 10.1016/S0021-9673(99)01316-3 pmid:10895938
18 Masawat P, Slater J M. The determination of tetracycline residues in food using a disposable screen-printed gold electrode (SPGE). Sensors and Actuators. B, Chemical , 2007, 124(1): 127–132
doi: 10.1016/j.snb.2006.12.010
19 Loetanantawong B, Suracheep C, Somasundrum M, Surareungchai W. Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide—ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection. Analytical Chemistry , 2004, 76(8): 2266–2272
doi: 10.1021/ac035085b pmid:15080737
20 Casella I G, Picerno F. Determination of tetracycline residues by liquid chromatography coupled with electrochemical detection and solid phase extraction. Journal of Agricultural and Food Chemistry , 2009, 57(19): 8735–8741
doi: 10.1021/jf902086y pmid:19754048
21 Boo H, Jeong R A, Park S, Kim K S, An K H, Lee Y H, Han J H, Kim H C, Chung T D. Electrochemical nanoneedle biosensor based on multiwall carbon nanotube. Analytical Chemistry , 2006, 78(2): 617–620
doi: 10.1021/ac0508595 pmid:16408948
22 Xiong H, Kim J Y, Kim E K, Amemiya S. Scanning electrochemical microscopy of one-dimensional nanostructure: effects of nanostructure dimensions on the tip feedback current under unbiased conditions. Journal of Electroanalytical Chemistry , 2009, 629(1-2): 78–86
doi: 10.1016/j.jelechem.2009.01.034 pmid:20160938
23 Küpper M, Schultze J W. SLCP-The scanning diffusion limited current probe: a new method for spatially resolved analysis. Electrochimica Acta , 1997, 42(20-22): 3085–3094
doi: 10.1016/S0013-4686(97)00156-4
24 Shulga O, Kirchhoff J R. An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochemistry Communications , 2007, 9(5): 935–940
doi: 10.1016/j.elecom.2006.11.021
25 Ding X J, Mou S F. Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent. Journal of Chromatography. A , 2000, 897(1-2): 205–214
doi: 10.1016/S0021-9673(00)00779-2 pmid:11128204
26 Wangfuengkanagul N, Siangproh W, Chailapakul O. A flow injection method for the analysis of tetracycline antibiotics in pharmaceutical formulations using electrochemical detection at anodized boron-doped diamond thin film electrode. Talanta , 2004, 64(5): 1183–1188
doi: 10.1016/j.talanta.2004.04.032 pmid:18969727
27 Vega D, Agüí L, González-Cortés A, Yá?ez-Sede?o P, Pingarrón J M. Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Analytical and Bioanalytical Chemistry , 2007, 389(3): 951–958
doi: 10.1007/s00216-007-1505-7 pmid:17671781
[1] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[2] Lu Song, Can Wang, Yizhu Wang. Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere[J]. Front. Environ. Sci. Eng., 2020, 14(6): 95-.
[3] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[4] Jie Liao, Chaoxiang Liu, Lin Liu, Jie Li, Hongyong Fan, Jiaqi Ye, Zhichao Zeng. Influence of hydraulic retention time on behavior of antibiotics and antibiotic resistance genes in aerobic granular reactor treating biogas slurry[J]. Front. Environ. Sci. Eng., 2019, 13(3): 31-.
[5] Mengli Wang, Ruying Li, Qing Zhao. Distribution and removal of antibiotic resistance genes during anaerobic sludge digestion with alkaline, thermal hydrolysis and ultrasonic pretreatments[J]. Front. Environ. Sci. Eng., 2019, 13(3): 43-.
[6] Xiangyu Wang, Weitao Lian, Xin Sun, Jun Ma, Ping Ning. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(4): 9-.
[7] Qiang He, Yinying Zhu, Guo Li, Leilei Fan, Hainan Ai, Xiaoliu Huangfu, Hong Li. Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters[J]. Front. Environ. Sci. Eng., 2017, 11(6): 16-.
[8] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[9] Yongtao LV,Xuan CHEN,Lei WANG,Kai JU,Xiaoqiang CHEN,Rui MIAO,Xudong WANG. Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor[J]. Front. Environ. Sci. Eng., 2016, 10(2): 390-398.
[10] Lei WANG, Yongtao LV, Xudong WANG, Yongzhe YANG, Xiaorong BAI. Micro-analysis of nitrogen transport and conversion inside activated sludge flocs using microelectrodes[J]. Front Envir Sci Eng Chin, 2011, 5(4): 633-638.
[11] Guixiang ZHANG, Xitao LIU, Ke SUN, Ye ZHAO, Chunye LIN. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils[J]. Front Envir Sci Eng Chin, 2010, 4(4): 421-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed