|
|
Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste |
Yan ZHAO1, Wenjing LU2, Jiajun CHEN1, Xiangfeng ZHANG1, Hongtao WANG2( ) |
1. School of Environment, Beijing Normal University, Beijing 100875, China; 2. School of Environment, Tsinghua University, Beijing 100084, China |
|
|
Abstract Ethanol production from lignocellulosic waste has attracted considerable attention because of its feasibility and the generation of valuable products. Previous studies have shown that pretreatment and hydrolysis are key processes for lignocellulose conversion. Hydrothermal process is a promising technique because of its efficiency to break down the lignocellulosic structures and produce fermentable hexoses. Most studies in this field have therefore focused on understanding these processes or optimizing the parameters, but commonly reported low yields of fermentable hexoses. The inability to produce high yields of fermentable hexoses is mainly attributed to inadequate information on the conversion mechanisms of lignocellulose, particularly the reaction rules of dissolution, which is a limiting step in the entire conversion process. This paper critically reviewed the progress done in the research and development of the hydrothermal dissolution and hydrolysis of lignocellulose. Principles, processes, and related studies on separate dissolution and asynchronous hydrolysis of lignin, hemicellulose, and cellulose are presented. Potential research prospects are also suggested.
|
Keywords
lignocellulosic waste
hydrothermal conversion
separate dissolution
asynchronous hydrolysis
mechanism
|
Corresponding Author(s):
WANG Hongtao,Email:htwang@tsinghua.edu.cn
|
Issue Date: 01 April 2014
|
|
1 |
Yu Y, Lou X, Wu H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy & Fuels , 2008, 22(1): 46–60 doi: 10.1021/ef700292p
|
2 |
Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology , 2005, 96(6): 673–686 doi: 10.1016/j.biortech.2004.06.025 pmid:15588770
|
3 |
Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews , 2006, 106(9): 4044–4098 doi: 10.1021/cr068360d pmid:16967928
|
4 |
Sun Y, Zhuang J, Lin L, Ouyang P. Clean conversion of cellulose into fermentable glucose. Biotechnology Advances , 2009, 27(5): 625–632 doi: 10.1016/j.biotechadv.2009.04.023 pmid:19409478
|
5 |
Varga E, Schmidt A S, Réczey K, Thomsen A B. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology , 2003, 104(1): 37–50 doi: 10.1385/ABAB:104:1:37 pmid:12495204
|
6 |
Carrillo F, Lis M J, Colom X, López-Mesas M, Valldeperas J. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: Kinetic study. Process Biochemistry , 2005, 40(10): 3360–3364 doi: 10.1016/j.procbio.2005.03.003
|
7 |
Garrote G, Domínguez H, Parajó J C. Hydrothermal processing of lignocellulosic materials. Holz als Roh-und Werkstoff , 1999, 57(3): 191–202 doi: 10.1007/s001070050039
|
8 |
Bonn G, Concin R, Bobleter O. Hydrothermolysis—a new process for the utilization of biomass. Wood Science and Technology , 1983, 17(3): 195–202 doi: 10.1007/BF00372318
|
9 |
Adschiri T, Hirose S, Malaluan R, Arai K. Noncatalytic conversion of cellulose in supercritical and subcritical water. Journal of Chemical Engineering of Japan , 1993, 26(6): 676–680 doi: 10.1252/jcej.26.676
|
10 |
Díaz M J, Cara C, Ruiz E, Romero I, Moya M, Castro E. Hydrothermal pre-treatment of rapeseed straw. Bioresource Technology , 2010, 101(7): 2428–2435 doi: 10.1016/j.biortech.2009.10.085 pmid:19939678
|
11 |
Boussarsar H, Rogé B, Mathlouthi M. Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresource Technology , 2009, 100(24): 6537–6542 doi: 10.1016/j.biortech.2009.07.019 pmid:19664914
|
12 |
Zhuang X, Yuan Z, Ma L, Wu C, Xu M, Xu J, Zhu S, Qi W. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnology Advances , 2009, 27(5): 578–582 doi: 10.1016/j.biotechadv.2009.04.019 pmid:19397989
|
13 |
Kang P, Qin W, Zheng Z M, Dong C Q, Yang Y P. Theoretical study on the mechanisms of cellulose dissolution and precipitation in the phosphoric acid-acetone process. Carbohydrate Polymers , 2012, 90(4): 1771–1778 doi: 10.1016/j.carbpol.2012.07.068 pmid:22944446
|
14 |
Zhao Y, Lu W J, Wang H T. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chemical Engineering Journal , 2009, 150(2–3): 411–417 doi: 10.1016/j.cej.2009.01.026
|
15 |
Zhao Y, Lu W J, Wang H T, Yang J L. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology. Bioresource Technology , 2009, 100(23): 5884–5889 doi: 10.1016/j.biortech.2009.06.079 pmid:19616938
|
16 |
Jin F, Enomoto H. Application of hydrothermal reaction to conversion of plant-origin biomasses into acetic and lactic acids. Journal of Materials Science , 2008, 43(7): 2463–2471 doi: 10.1007/s10853-007-2013-z
|
17 |
Jin F, Zhou Z, Kishita A, Enomoto H. Hydrothermal conversion of biomass into acetic acid. Journal of Materials Science , 2006, 41(5): 1495–1500 doi: 10.1007/s10853-006-7493-8
|
18 |
Thomsen M H, Thygesen A, Thomsen A B. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresource Technology , 2008, 99(10): 4221–4228 doi: 10.1016/j.biortech.2007.08.054 pmid:17936621
|
19 |
Sasaki M, Fang Z, Fukushima Y, Adschiri T, Ara K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research , 2000, 39(8): 2883–2890 doi: 10.1021/ie990690j
|
20 |
Kabyemela B M, Adschiri T, Malaluan R M, Arai K. Kinetics of Glucose Epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research , 1997, 36(5): 1552–1558 doi: 10.1021/ie960250h
|
21 |
Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K. Cellulose hydrolysis in subcritical and supercritical water. Journal of Supercritical Fluids , 1998, 13(1–3): 261–268 doi: 10.1016/S0896-8446(98)00060-6
|
22 |
Resende F L P, Neff M E, Savage P E. Noncatalytic gasification of cellulose in supercritical water. Energy & Fuels , 2007, 21(6): 3637–3643 doi: 10.1021/ef7002206
|
23 |
Macdonald D D, Kriksunov L B. Probing the chemical and electrochemical properties of SCWO systems. Electrochimica Acta , 2001, 47(5): 775–790 doi: 10.1016/S0013-4686(01)00758-7
|
24 |
Saka S, Ueno T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose (London, England) , 1999, 6(3): 177–191 doi: 10.1023/A:1009232508644
|
25 |
Yoshida T, Nonaka H, Matsumura Y. Hydrothermal treatment of cellulose as a pretreatment for ethanol fermentation: Cellulose hydrolysis experiments. Journal of the Japan Institute of Energy , 2005, 84(7): 544–548 doi: 10.3775/jie.84.544
|
26 |
Ehara K, Saka S. A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose (London, England) , 2002, 9(3/4): 301–311 doi: 10.1023/A:1021192711007
|
27 |
Jin F, Zhou Z, Enomoto H, Moriya T, Higashijima H. Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid–base catalytic effect of subcritical water. Chemistry Letters , 2004, 33(2): 126–127 doi: 10.1246/cl.2004.126
|
28 |
Kabyemela B M, Takigawa M, Adschiri T, Malaluan R M, Arai K. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water. Industrial & Engineering Chemistry Research , 1998, 37(2): 357–361 doi: 10.1021/ie9704408
|
29 |
Feng W, van der Kooi H J, de Swaan Arons J. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chemical Engineering and Processing , 2004, 43(12): 1459–1467 doi: 10.1016/j.cep.2004.01.004
|
30 |
Mochidzuki K, Sakoda A, Suzuki M. Liquid-phase thermogravimetric measurement of reaction kinetics of the conversion of biomass wastes in pressurized hot water: a kinetic study. Advances in Environmental Research , 2003, 7(2): 421–428 doi: 10.1016/S1093-0191(02)00014-X
|
31 |
Ogihara Y, Smith R L Jr, Inomata H, Arai K. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities. Cellulose (London, England) , 2005, 12(6): 595–606 doi: 10.1007/s10570-005-9008-1
|
32 |
Ehara K, Saka S. Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. Journal of Wood Science , 2005, 51(2): 148–153 doi: 10.1007/s10086-004-0626-2
|
33 |
Zhao Y, Lu W J, Wang H T, Li D. Combined supercritical and subcritical process for cellulose hydrolysis to fermentable hexoses. Environmental Science & Technology , 2009, 43(5): 1565–1570 doi: 10.1021/es803122f pmid:19350936
|
34 |
Petersen M O, Larsen J, Thomsen M H. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass and Bioenergy , 2009, 33(5): 834–840 doi: 10.1016/j.biombioe.2009.01.004
|
35 |
Zhao Y, Wang H T, Lu W J, Wang H. Combined supercritical and subcritical conversion of cellulose for fermentable hexose production in a flow reaction system. Chemical Engineering Journal , 2011, 166(3): 868–872 doi: 10.1016/j.cej.2010.11.058
|
36 |
Zhao Y, Lu W J, Wu H Y, Liu J W, Wang H T. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system. Bioresource Technology , 2012, 126: 391–396 doi: 10.1016/j.biortech.2012.03.001 pmid:22459955
|
37 |
S?na? A, Gülbaya S, Uskana B, Güllü M. Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose. Journal of Supercritical Fluids , 2009, 50(2): 121–127 doi: 10.1016/j.supflu.2009.05.009
|
38 |
Kumar S, Gupta R B. Hydrolysis of microcrystalline cellulose in subcritical and supercritical water in a continuous flow reactor. Industrial & Engineering Chemistry Research , 2008, 47(23): 9321–9329 doi: 10.1021/ie801102j
|
39 |
Matsunaga M, Matsui H, Otsuka Y, Yamamoto S. Chemical conversion of wood by treatment in a semi-batch reactor with subcritical water. Journal of Supercritical Fluids , 2008, 44(3): 364–369 doi: 10.1016/j.supflu.2007.09.011
|
40 |
Rogalinski T, Liu K, Albrecht T, Brunner G. Hydrolysis kinetics of biopolymers in subcritical water. Journal of Supercritical Fluids , 2008, 46(3): 335–341 doi: 10.1016/j.supflu.2007.09.037
|
41 |
Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences , 2008, 9(9): 1621–1651 doi: 10.3390/ijms9091621 pmid:19325822
|
42 |
Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T. Supercritical water treatment of biomass for energy and material recovery. Combustion Science and Technology , 2006, 178(1–3): 509–536 doi: 10.1080/00102200500290815
|
43 |
Lu X, Yamauchi K, Phaiboonsilpa N, Saka S. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. Journal of Wood Science , 2009, 55(5): 367–375 doi: 10.1007/s10086-009-1040-6
|
44 |
Suryawati L, Wilkins M R, Bellmer D D, Huhnke R L, Maness N O, Banat I M. Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochemistry , 2009, 44(5): 540–545 doi: 10.1016/j.procbio.2009.01.011
|
45 |
Le Moigne N, Navard P. Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose (London, England) , 2010, 17(1): 31–45 doi: 10.1007/s10570-009-9370-5
|
46 |
Driemeier C, Pimenta M T B, Rocha G J M, Oliveira M M, Mello D B, Maziero P, Goncalves A R. Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose (London, England) , 2011, 18(6): 1509–1519 doi: 10.1007/s10570-011-9592-1
|
47 |
Kumar S, Gupta R, Lee Y Y, Gupta R B. Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresource Technology , 2010, 101(4): 1337–1347 doi: 10.1016/j.biortech.2009.09.035 pmid:19818604
|
48 |
Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G. The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresource Technology , 2011, 102(19): 9272–9278 doi: 10.1016/j.biortech.2011.06.044 pmid:21763128
|
49 |
Kamio E, Sato H, Takahashi S, Noda H, Fukuhara C, Okamura T. Liquefaction kinetics of cellulose treated by hot compressed water under variable temperature conditions. Journal of Materials Science , 2008, 43(7): 2179–2188 doi: 10.1007/s10853-007-2043-6
|
50 |
Saka S. Recent progress in supercritical fluid science for biofuel production from woody biomass. Forestry Studies in China , 2006, 8(3): 9–15 doi: 10.1007/s11632-006-0016-5
|
51 |
Tymchyshyn M, Xu C C. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresource Technology , 2010, 101(7): 2483–2490 doi: 10.1016/j.biortech.2009.11.091 pmid:20031393
|
52 |
Lü X, Saka S. New insights on monosaccharides’ isomerization, dehydration and fragmentation in hot-compressed water. Journal of Supercritical Fluids , 2012, 61: 146–156 doi: 10.1016/j.supflu.2011.09.005
|
53 |
Hosoya T, Kawamoto H, Saka S. Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis , 2007, 80(1): 118–125 doi: 10.1016/j.jaap.2007.01.006
|
54 |
Hashaikeh R, Fang Z, Butler I S, Hawari J, Kozinski J A. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel , 2007, 86(10–11): 1614–1622 doi: 10.1016/j.fuel.2006.11.005
|
55 |
Lü X, Saka S. Hydrolysis of Japanese beech by batch and semi-flow water under subcritical temperatures and pressures. Biomass and Bioenergy , 2010, 34(8): 1089–1097 doi: 10.1016/j.biombioe.2010.02.015
|
56 |
Zhang C, Zhu J Y, Gleisner R, Sessions J. Fractionation of forest residues of douglas-fir for fermentable sugar production by SPORL pretreatment. Bioenergy Research , 2012, 5(4): 978–988 doi: 10.1007/s12155-012-9213-3
|
57 |
Van Dyk J S, Pletschke B I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances , 2012, 30(6): 1458–1480 doi: 10.1016/j.biotechadv.2012.03.002 pmid:22445788
|
58 |
Chu Q L, Li X, Ma B, Xu Y, Ouyang J, Zhu J J, Yu S Y, Yong Q. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Bioresource Technology , 2012, 123: 699–702 doi: 10.1016/j.biortech.2012.07.118 pmid:22975252
|
59 |
Wei L, Shrestha A, Tu M, Adhikari S. Effects of surfactant on biochemical and hydrothermal conversion of softwood hemicellulose to ethanol and furan derivatives. Process Biochemistry , 2011, 46(9): 1785–1792 doi: 10.1016/j.procbio.2011.06.001
|
60 |
Faga B A, Wilkins M R, Banat I M. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresource Technology , 2010, 101(7): 2273–2279 doi: 10.1016/j.biortech.2009.11.001 pmid:19939673
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|