Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (4) : 642-648    https://doi.org/10.1007/s11783-014-0707-4
RESEARCH ARTICLE
Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization
Lei ZHENG1,*(),Wei WANG1,Wei QIAO2,Yunchun SHI1,Xiao LIU1
1. School of Environment, Tsinghua University, Beijing 100084, China
2. College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
 Download: PDF(200 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present research explored the application of geopolymerization for the immobilization and solidification of heavy metal added into metakaolinte. The compressive strength of geopolymers was controlled by the dosage of heavy metal cations, and geopolymers have a toleration limit for heavy metals. The influence of alkaline activator dosage and type on the heavy metal ion immobilization efficiency of metakaolinte-based geopolymer was investigated. A geopolymer with the highest heavy metal immobilization efficiency was identified to occur at an intermediate Na2SiO3 dosage and the metal immobilization efficiency showed an orderly increase with the increasing Na+ dosage. Geopolymers with and without heavy metals were analyzed by the X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. No crystalline phase containing heavy metals was detected in geopolymers with heavy metal, suggesting that the crystalline phase containing heavy metals is not produced or most of the phases incorporating heavy metals are amorphous. FTIR spectroscopy showed that, with increasing heavy metal addition, an increase in NO3- peak intensity was observed, which was accompanied by a decrease in the CO32- peak.

Keywords geopolymer      heavy metal      immobilization      solidification     
Corresponding Author(s): Lei ZHENG   
Online First Date: 22 May 2014    Issue Date: 25 June 2015
 Cite this article:   
Wei WANG,Wei QIAO,Yunchun SHI, et al. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization[J]. Front. Environ. Sci. Eng., 2015, 9(4): 642-648.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0707-4
https://academic.hep.com.cn/fese/EN/Y2015/V9/I4/642
Fig.1  (1)
Series Na︰MK/(mol·kg-1) Na2SiO3︰MK/(mol·kg-1) Heavy metal ion︰MK/(mol·kg-1)
Series 1 3 0.0 0.0, 0.08, 0.15, 0.3, 0.5, or 0.8
Series 2 3 0.0 0.2
3 0.1 0.2
3 0.2 0.2
3 0.3 0.2
3 0.4 0.2
3 0.5 0.2
3 0.6 0.2
Series 3 1 0.3 0.2
2 0.3 0.2
3 0.3 0.2
4 0.3 0.2
4.5 0.3 0.2
Tab.1  Synthesis composition of the different series of geopolymers
Fig.2  Variation of 14 d compressive strength with respect to heavy metal dosage (a) is for Pb2+, (b) is for Cd2+, (c) is for Cu2+, (d) is for Zn2+)
Fig.3  Pore structure of geopolymers with and without heavy metals, (a) is for geopolymers added with Pb, (b) is for geopolymers added with Cd, (c) is for geopolymers added with Cu, (d) is for geopolymers added with Zn
Fig.4  Variation immobilization efficiency with respect to (a) Na2SiO3 dosage at a constant Na/MK ratio of 3 mol·kg-1, and (b) Na/MK ratio at a constant Na2SiO3 dosage of 0.3 mol·kg-1
Fig.5  XRD patterns (a) and FTIR spectra (b) of geopolymers and the original MK
1 Davidovits J. Geopolymers: inorganic polymeric new materials. Journal of Thermal Analysis, 1991, 37(8): 1633–1656
https://doi.org/10.1007/BF01912193
2 Kamel A Z, Mohammad S. Al-Harahsheh, Falah B H. Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials, 2011, 188(1–3): 414–421
3 Yunsheng Z, Wei S, Qianli C, Lin C. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 2007, 143(1–2): 206–213
https://doi.org/10.1016/j.jhazmat.2006.09.033 pmid: 17034943
4 van Deventer J S J, Provis J L, Duxson P, Lukey G C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 2007, 139(3): 506–513
https://doi.org/10.1016/j.jhazmat.2006.02.044 pmid: 16600483
5 Zhang J, Provis J L, Feng D, van Deventer J S J. Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. Journal of Hazardous Materials, 2008, 157(2–3): 587–598
https://doi.org/10.1016/j.jhazmat.2008.01.053 pmid: 18313213
6 Phair J W, Van Deventer J S J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Minerals Engineering, 2001, 14(3): 289–304
https://doi.org/10.1016/S0892-6875(01)00002-4
7 Bankowski P, Zou L, Hodges R. Using inorganic polymer to reduce leach rates of metals from brown coal fly ash. Minerals Engineering, 2004, 17(2): 159–166
https://doi.org/10.1016/j.mineng.2003.10.024
8 van Jaarsveld J G S, Van Deventer J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Industrial & Engineering Chemistry Research, 1999, 38(10): 3929–3941
https://doi.org/10.1021/ie980804b
9 Buchwald A, Zellmann H D, Kap Ch. Condensation of aluminosilicate gels-model system for geopolymer binders. Journal of Non-Crystalline Solids, 2011, 357(5): 1376–1382
https://doi.org/10.1016/j.jnoncrysol.2010.12.036
10 Villa C, Pecina E T, Torres R, Gómez L. Geopolymer synthesis using alkaline activation of natural zeolite. Construction & Building Materials, 2010, 24(11): 2084–2090
https://doi.org/10.1016/j.conbuildmat.2010.04.052
11 Pandey B, Kinrade S D, Catalan L J J. Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes. Journal of Environmental Management, 2012, 101: 59–67
https://doi.org/10.1016/j.jenvman.2012.01.029 pmid: 22406845
12 Xu J Z, Zhou Y L, Chang Q, Qu H Q. Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers. Materials Letters, 2006, 60(6): 820–822
https://doi.org/10.1016/j.matlet.2005.10.019
13 Poon S, Lio K W. The limitation of the toxicity characteristic leaching procedure for evaluation cement-based stabilized/solidified waste forms. Waste Management (New York), 1997, 17(1): 15–23
https://doi.org/10.1016/S0956-053X(97)00030-5
14 Wang W, Zheng L, Wang F, Wan X, Yin K Q, Gao X B. Release of Elements from municipal solid waste incineration fly ash. Frontiers of Environmental Science & Engineering in China, 2010, 4(4): 482–489
https://doi.org/10.1007/s11783-010-0245-7
15 van Jaarsveld J G S, van Deventer J S J, Lukey G C. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal, 2002, 89(1–3): 63–73
https://doi.org/10.1016/S1385-8947(02)00025-6
16 Xiao Y, Lasaga A C. Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+ (H3O+) catalysis. Geochimica et Cosmochimica Acta, 1994, 58(24): 5379–5400
https://doi.org/10.1016/0016-7037(94)90237-2
17 Zheng L, Wang W, Shi Y. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere, 2010, 79(6): 665–671
https://doi.org/10.1016/j.chemosphere.2010.02.018 pmid: 20304461
18 Duxson P, Provis J L, Lukey G C, Mallicoat S W, Kriven W M, van Deventer J S J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1–3): 47–58
https://doi.org/10.1016/j.colsurfa.2005.06.060
19 Phair J W, van Deventer J S J. Effect of the silicate activator pH on the microstructura characteristics of waste-based geopolymers. International Journal of Mineral Processing, 2002, 66(1–4): 121–143
https://doi.org/10.1016/S0301-7516(02)00013-3
20 Zheng L, Wang C, Wang W, Shi Y, Gao X. Immobilization of MSWI fly ash through geopolymerization: effects of water-wash. Waste Management, 2011, 31: 311–317
21 Theo Kloprogge J, Wharton D, Hickey L, Frost R L. Infrared and raman study of interlayer anions CO32-, NO3-, SO42- and ClO4- in Mg/Al-hydrotalcite. American Mineralogist, 2002, 87: 623–629
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[4] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[5] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[6] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[7] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[8] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[9] Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang. Magnetotactic bacteria: Characteristics and environmental applications[J]. Front. Environ. Sci. Eng., 2020, 14(4): 56-.
[10] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[11] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[12] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[13] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[14] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[15] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed