|
|
Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids |
Xiaoliu HUANGFU,Yaan WANG,Yongze LIU,Xixin LU,Xiang ZHANG,Haijun CHENG,Jin JIANG( ),Jun MA( ) |
Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China |
|
|
Abstract The aggregation of common manganese dioxide (MnO2) colloids has great impact on their surface reactivity and therefore on their fates as well as associated natural and synthetic contaminants in engineered (e.g. water treatment) and natural aquatic environments. Nevertheless, little is known about the aggregation kinetics of MnO2 colloids and the effect of humic acid (HA) and surfactants on these. In this study, the early stage aggregation kinetics of MnO2 nanoparticles in NaNO3 and Ca(NO3)2 solutions in the presence of HA and surfactants (i.e., sodium dodecyl sulfate (SDS), and polyvinylpyrrolidone (PVP)) were modeled through time-resolved dynamic light scattering. In the presence of HA, MnO2 colloids were significantly stabilized with a critical coagulation concentration (CCC) of ~300 mmol·L-1 NaNO3 and 4 mmol·L-1 Ca(NO3)2. Electrophoretic mobility (EPM) measurements confirmed that steric hindrance may be primarily responsible for increasing colloidal stability in the presence of HA. Moreover, the molecular and/or chemical properties of HA might impact its stabilizing efficiency. In the case of PVP, only a slight increase of aggregation kinetics was observed, due to steric reactions originating from adsorbed layers of PVP on the MnO2 surface. Consequently, higher CCC values were obtained in the presence of PVP. However, there was a negligible reduction in MnO2 colloidal stability in the presence of 20 mg·L-1SDS.
|
Keywords
humic acid
surfactant
aggregation kinetics
drinking water
manganese dioxide colloids
|
Corresponding Author(s):
Jin JIANG
|
Online First Date: 11 June 2014
Issue Date: 31 December 2014
|
|
1 |
Ferreira J R, Lawlor A J, Bates J M, Clarke K J, Tipping E. Chemistry of riverine and estuarine suspended particles from the Ouse-Trent system, UK. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 120(1–3): 183–198
https://doi.org/10.1016/S0927-7757(96)03721-1
|
2 |
Lienemann C P, Taillefert M, Perret D, Gaillard J F. Association of cobalt and manganese in aquatic systems: Chemical and microscopic evidence. Geochimica et Cosmochimica Acta, 1997, 61(7): 1437–1446
https://doi.org/10.1016/S0016-7037(97)00015-X
|
3 |
Herszage J, dos Santos Afonso M, Luther G W. Oxidation of cysteine and glutathione by soluble polymeric MnO2. Environmental Science & Technology, 2003, 37(15): 3332–3338
https://doi.org/10.1021/es0340634
pmid: 12966978
|
4 |
Zhang H, Huang C H. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environmental Science & Technology, 2003, 37(11): 2421–2430
https://doi.org/10.1021/es026190q
pmid: 12831027
|
5 |
Andrzejewski P, Nawrocki L, Nawrocki J. The role of manganese dioxide (MnO2) in the process of N-nitrosodimethylamine (NDMA) formation during reaction of dimethylamine (DMA) with some oxidants in water solutions. Ochr Sr, 2009, 31(4): 25–29
|
6 |
Jiang J, Pang S Y, Ma J. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides. Environmental Science & Technology, 2009, 43(21): 8326–8331
https://doi.org/10.1021/es901663d
pmid: 19924964
|
7 |
Loomer D B, Al T A, Banks V J, Parker B L, Mayer K U. Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4. Environmental Science & Technology, 2010, 44(15): 5934–5939
https://doi.org/10.1021/es100879w
pmid: 20617842
|
8 |
Al-Thabaiti S A, Al-Nowaiser F M, Obaid A Y, Al-Youbi A O, Khan Z. Formation and decomposition of water soluble colloidal manganese dioxide during the reduction of MnO4- by cysteine. A kinetic study. Journal of Dispersion Science and Technology, 2008, 29(10): 1391–1395
https://doi.org/10.1080/01932690802313188
|
9 |
Ma J, Graham N. Controlling the formation of chloroform by permanganate preoxidation- Destruction of precursors. Journal of Water Supply Research and Technology-Aqua, 1996, 45(6): 308–315
|
10 |
Lee S M, Kim W G, Yang J K, Tiwari D. Sorption behaviour of manganese-coated calcined-starfish and manganese-coated sand for Mn(II). Environmental Technology, 2010, 31(4): 445–453
https://doi.org/10.1080/09593330903514474
pmid: 20450119
|
11 |
Wigginton N S, Haus K L, Hochella M F Jr. Aquatic environmental nanoparticles. Journal of Environmental Monitoring, 2007, 9(12): 1306–1316
https://doi.org/10.1039/b712709j
pmid: 18049768
|
12 |
Buffle J, Leppard G G. Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environmental Science & Technology, 1995, 29(9): 2169–2175
https://doi.org/10.1021/es00009a004
pmid: 22280252
|
13 |
Villalobos M, Bargar J, Sposito G. Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environmental Science & Technology, 2005, 39(2): 569–576
https://doi.org/10.1021/es049434a
pmid: 15707057
|
14 |
Yang K, Lin D, Xing B. Interactions of humic acid with nanosized inorganic oxides. Langmuir, 2009, 25(6): 3571–3576
https://doi.org/10.1021/la803701b
pmid: 19708146
|
15 |
Yao W S, Millero F J. Adsorption of phosphate on manganese dioxide in seawater. Environmental Science & Technology, 1996, 30(2): 536–541
https://doi.org/10.1021/es950290x
|
16 |
Jiang J, Pang S Y, Ma J. Role of ligands in permanganate oxidation of organics. Environmental Science & Technology, 2010, 44(11): 4270–4275
https://doi.org/10.1021/es100038d
pmid: 20429549
|
17 |
Jiang J, Pang S Y, Ma J, Liu H. Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters. Environmental Science & Technology, 2012, 46(3): 1774–1781
https://doi.org/10.1021/es2035587
pmid: 22208220
|
18 |
Wang C Y, Groenzin H, Shultz M J. Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. Journal of the American Chemical Society, 2005, 127(27): 9736–9744
https://doi.org/10.1021/ja051996m
pmid: 15998078
|
19 |
Zhang H Z, Penn R L, Hamers R J, Banfield J F. Enhanced adsorption of molecules on surfaces of nanocrystalline particles. Journal of Physical Chemistry B, 1999, 103(22): 4656–4662
https://doi.org/10.1021/jp984574q
|
20 |
Tseng Y H, Lin H Y, Kuo C S, Li Y Y, Huang C P. Thermostability of nano-TiO2 and its photocatalytic activity. Reaction Kinetics and Catalysis Letters, 2006, 89(1): 63–69
https://doi.org/10.1007/s11144-006-0087-2
|
21 |
Zhang Y, Chen Y, Westerhoff P, Crittenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 2009, 43(17): 4249–4257
https://doi.org/10.1016/j.watres.2009.06.005
pmid: 19577783
|
22 |
Tipping E, Higgins D C. The effect of adsorbed humic substances on the colloid stability of heamatite particles. Colloids and Surfaces, 1982, 5(2): 85–92
https://doi.org/10.1016/0166-6622(82)80064-4
|
23 |
Saleh N B, Pfefferle L D, Elimelech M. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environmental Science & Technology, 2010, 44(7): 2412–2418
https://doi.org/10.1021/es903059t
pmid: 20184360
|
24 |
Domingos R F, Tufenkji N, Wilkinson K I. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environmental Science & Technology, 2009, 43(5): 1282–1286
https://doi.org/10.1021/es8023594
pmid: 19350891
|
25 |
Huangfu X, Jiang J, Ma J, Liu Y, Yang J. Aggregation kinetics of manganese dioxide colloids in aqueous solution: influence of humic substances and biomacromolecules. Environmental Science & Technology, 2013, 47(18): 10285–10292
pmid: 23947796
|
26 |
Abe T, Kobayashi S, Kobayashi M. Aggregation of colloidal silica particles in the presence of fulvic acid, humic acid, or alginate: Effects of ionic composition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379(1–3): 21–26
https://doi.org/10.1016/j.colsurfa.2010.11.052
|
27 |
Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 2007, 309(1): 126–134
https://doi.org/10.1016/j.jcis.2007.01.074
pmid: 17331529
|
28 |
Tejamaya M, R?mer I, Merrifield R C, Lead J R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environmental Science & Technology, 2012, 46(13): 7011–7017
https://doi.org/10.1021/es2038596
pmid: 22432856
|
29 |
Bouchard D, Zhang W, Powell T, Rattanaudompol U S. Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. Environmental Science & Technology, 2012, 46(8): 4458–4465
https://doi.org/10.1021/es204618v
pmid: 22443301
|
30 |
Ma J, Jiang J, Pang S, Guo J. Adsorptive fractionation of humic acid at air-water interfaces. Environmental Science & Technology, 2007, 41(14): 4959–4964
https://doi.org/10.1021/es070238o
pmid: 17711209
|
31 |
Holthoff H, Egelhaaf S U, Borkovec M, Schurtenberger P, Sticher H. Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir, 1996, 12(23): 5541–5549
https://doi.org/10.1021/la960326e
|
32 |
Chen K L, Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 2006, 22(26): 10994–11001
https://doi.org/10.1021/la062072v
pmid: 17154576
|
33 |
Smith B, Wepasnick K, Schrote K E, Bertele A R, Ball W P, O’Melia C, Fairbrother D H. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environmental Science & Technology, 2009, 43(3): 819–825
https://doi.org/10.1021/es802011e
pmid: 19245021
|
34 |
Li X, Lenhart J J, Walker H W. Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir, 2010, 26(22): 16690–16698
https://doi.org/10.1021/la101768n
pmid: 20879768
|
35 |
Liu X, Wazne M, Han Y, Christodoulatos C, Jasinkiewicz K L. Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes. Journal of Colloid and Interface Science, 2010, 348(1): 101–107
https://doi.org/10.1016/j.jcis.2010.04.036
pmid: 20483427
|
36 |
Brant J, Lecoanet H, Wiesner M R. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. Journal of Nanoparticle Research, 2005, 7(4–5): 545–553
https://doi.org/10.1007/s11051-005-4884-8
|
37 |
Li X, Lenhart J J, Walker H W. Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir, 2012, 28(2): 1095–1104
https://doi.org/10.1021/la202328n
pmid: 22149007
|
38 |
Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 2007, 309(1): 126–134
https://doi.org/10.1016/j.jcis.2007.01.074
pmid: 17331529
|
39 |
Furman O, Usenko S, Lau B L T. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environmental Science & Technology, 2013, 47(3): 1349–1356
pmid: 23298221
|
40 |
Louie S M, Tilton R D, Lowry G V. Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environmental Science & Technology, 2013, 47(9): 4245–4254
https://doi.org/10.1021/es400137x
pmid: 23550560
|
41 |
Huynh K A, Chen K L. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environmental Science & Technology, 2011, 45(13): 5564–5571
https://doi.org/10.1021/es200157h
pmid: 21630686
|
42 |
Lin S, Cheng Y, Liu J, Wiesner M R. Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir, 2012, 28(9): 4178–4186
https://doi.org/10.1021/la202884f
pmid: 22242766
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|