Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (6) : 9    https://doi.org/10.1007/s11783-016-0875-5
RESEARCH ARTICLE
Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles
Shuai Liang1(),Peng Gao1,Xiaoqi Gao1,Kang Xiao2,Xia Huang3()
1. College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(2170 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two types of amphiphilic nanoparticles were prepared via silanization reaction.

Amphiphilic nanoparticles tend to protrude from membrane matrix by segregation.

Blending with amphiphilic nanoparticles further enhances membrane hydrophilicity.

Excessive silanization cause adverse effect on blending efficiency.

Membrane modification is one of the most feasible and effective solutions to membrane fouling problem which tenaciously hampered the further augmentation of membrane separation technology. Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane production lines, possesses an advantageous viability in practical applications. However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO2 as pristine NPs (pNPs), respectively. The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed the presence of appropriate organic components in both the ZnO and SiO2 aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO2 aNP-blended membranes with proper silanization (100% and 200% w/w) achieved a significantly increased blending efficiency with more NPs scattering on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO2 types.

Keywords Membrane modification      Nanoparticle      Hydrophilic      Amphiphilic      Blending     
PACS:     
Fund: 
Corresponding Author(s): Shuai Liang,Xia Huang   
Issue Date: 27 September 2016
 Cite this article:   
Shuai Liang,Peng Gao,Xiaoqi Gao, et al. Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles[J]. Front. Environ. Sci. Eng., 2016, 10(6): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0875-5
https://academic.hep.com.cn/fese/EN/Y2016/V10/I6/9
Fig.1  Schematic protocol to prepare the amphiphilic nanoparticles (aNPs) via silanization reaction. 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) was employed as a saline coupling agent to introduce organic molecule chains to the pristine NP (pNP) surfaces thereby rendering the NPs amphiphilic.
membrane type casting solution contentsa)/g TMSPMA dosage for aNP preparation(w/w-NPs)
PVP pNPs aNPs PVDF NMP
pristine 0.5 0 0 17 85
M-pNPs 0.5 0.5 0 17 85
M-aNPs-100% 0.5 0 0.5 17 85 100%
M-aNPs-200% 0.5 0 0.5 17 85 200%
M-aNPs-400% 0.5 0 0.5 17 85 400%
M-aNPs-800% 0.5 0 0.5 17 85 800%
Tab.1  Recipes of different casting solutions for membrane fabrication
Fig.2  Comparison of Fourier transform infrared (FTIR) spectra of the pNPs and surface-tailored aNPs for two types of materials: (a) ZnO and (b) SiO2. A dosage of 100% (w/w-NPs) TMSPMA was used to prepare the amphiphilic NPs.
Fig.3  X-ray photoelectron spectroscopy (XPS) analyses of the pNPs and aNPs for two types of materials: (a) ZnO and (b) SiO2. A dosage of 100% (w/w-NPs) TMSPMA was used to prepare the amphiphilic NPs.
Fig.4  SEM top views ((a), (b), (c), (g), (h), and (i)) and sectional views ((d), (e), (f), (j), (k), and (l)) of the pristine membrane, M-pNPs, and M-aNPs-100% for both the ZnO and SiO2 types.
Fig.5  Atomic percent of (a)Zn and (b)Si on the surface of the corresponding M-pNPs, M-aNPs-200%, M-aNPs-400%, and M-aNPs-800%.
Fig.6  Contact angles of deionized (DI) water on the pristine membranes (solid bars), membranes blended with pNPs (open bars; designated as M-pNPs), and membranes blended with different aNPs silanized with varied TMSPMA dosage ranging from 100% w/w-NPs to 800% w/w-NPs (patterned bars; designated as M-aNPs-100%, M-aNPs-200%, M-aNPs-400%, and M-aNPs-800%, respectively). Modification efficiencies using two types of NPs−(a) ZnO and (b) SiO2−were compared. (c) Schematic diagram illustrating a probable effect of excessive salinization with extra TMSPMA dosage on NP morphology.
Fig.7  Water permeability of the pristine membrane, M-pNPs, M-aNPs-100%, M-aNPs-200%, and M-aNPs-400% for two types of NPs: ZnO and SiO2.
1 Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment. Science, 2011, 333(6043): 712–717
https://doi.org/10.1126/science.1200488 pmid: 21817042
2 Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488(7411): 313–319
https://doi.org/10.1038/nature11477 pmid: 22895336
3 Xiao K, Xu Y, Liang S, Lei T, Sun J, Wen X, Zhang H, Chen C, Huang X. Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect. Frontiers of Environmental Science & Engineering, 2014, 8(6): 805–819
https://doi.org/10.1007/s11783-014-0756-8
4 Meng F G, Chae S R, Shin H S, Yang F L, Zhou Z B. Recent advances in membrane bioreactors: configuration development, pollutant elimination, and sludge reduction. Environmental Engineering Science, 2012, 29(3): 139–160
https://doi.org/10.1089/ees.2010.0420
5 Huang X, Xiao K, Shen Y X. Recent advances in membrane bioreactor technology for wastewater treatment in China. Frontiers of Environmental Science & Engineering, 2010, 4(3): 245–271
https://doi.org/10.1007/s11783-010-0240-z
6 She Q, Wang R, Fane A G, Tang C Y. Membrane fouling in osmotically driven membrane processes: a review. Journal of Membrane Science, 2016, 499: 201–233
https://doi.org/10.1016/j.memsci.2015.10.040
7 Wang S, Liang S, Liang P, Zhang X Y, Sun J Y, Wu S J, Huang X. In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance. Journal of Membrane Science, 2015, 491: 37–44
https://doi.org/10.1016/j.memsci.2015.05.014
8 Chang H, Liu B, Luo W, Li G. Fouling mechanisms in the early stage of an enhanced coagulation-ultrafiltration process. Frontiers of Environmental Science & Engineering, 2015, 9(1): 73–83
https://doi.org/10.1007/s11783-014-0692-7
9 Liang S, Qi G, Xiao K, Sun J, Giannelis E P, Huang X, Elimelech M. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: implications for organic fouling in membrane bioreactors. Journal of Membrane Science, 2014, 463: 94–101
https://doi.org/10.1016/j.memsci.2014.03.037
10 Mauter M S, Wang Y, Okemgbo K C, Osuji C O, Giannelis E P, Elimelech M. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Applied Materials & Interfaces, 2011, 3(8): 2861–2868
https://doi.org/10.1021/am200522v pmid: 21736330
11 Hegab H M, ElMekawy A, Barclay T G, Michelmore A, Zou L, Saint C P, Ginic-Markovic M. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Applied Materials & Interfaces, 2015, 7(32): 18004–18016
https://doi.org/10.1021/acsami.5b04818 pmid: 26214126
12 Wang X M, Li X Y, Shih K. In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes. Journal of Membrane Science, 2011, 368(1–2): 134–143
https://doi.org/10.1016/j.memsci.2010.11.038
13 Li W Y, Sun X L, Wen C, Lu H, Wang Z W. Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes. Frontiers of Environmental Science & Engineering, 2013, 7(4): 492–502
https://doi.org/10.1007/s11783-012-0407-x
14 Cui A H, Liu Z, Xiao C F, Zhang Y F. Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS. Journal of Membrane Science, 2010, 360(1–2): 259–264
https://doi.org/10.1016/j.memsci.2010.05.023
15 Wang J H, Zhu L P, Zhu B K, Xu Y Y. Fabrication of superhydrophilic poly(styrene-alt-maleic anhydride)/silica hybrid surfaces on poly(vinylidene fluoride) membranes. Journal of Colloid and Interface Science, 2011, 363(2): 676–681
https://doi.org/10.1016/j.jcis.2011.07.052 pmid: 21862031
16 Tiraferri A, Kang Y, Giannelis E P, Elimelech M. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environmental Science & Technology, 2012, 46(20): 11135–11144
https://doi.org/10.1021/es3028617 pmid: 23002900
17 Liang S, Xiao K, Mo Y, Huang X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. Journal of Membrane Science, 2012, 394–395: 184–192
https://doi.org/10.1016/j.memsci.2011.12.040
18 Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules, 1999, 32(5): 1643–1650
https://doi.org/10.1021/ma980707u
19 Asatekin A, Kang S, Elimelech M, Mayes A M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly (ethylene oxide) comb copolymer additives. Journal of Membrane Science, 2007, 298(1–2): 136–146
https://doi.org/10.1016/j.memsci.2007.04.011
20 Bottino A, Camera-Roda G, Capannelli G, Munari S. The formation of microporous polyvinylidene difluoride membranes by phase separation. Journal of Membrane Science, 1991, 57(1): 1–20
https://doi.org/10.1016/S0376-7388(00)81159-X
21 Liang S, Kang Y, Tiraferri A, Giannelis E P, Huang X, Elimelech M. Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Applied Materials & Interfaces, 2013, 5(14): 6694–6703
https://doi.org/10.1021/am401462e pmid: 23796125
22 Posthumus W, Magusin P C, Brokken-Zijp J C M, Tinnemans A H A, van der Linde R. Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane. Journal of Colloid and Interface Science, 2004, 269(1): 109–116
https://doi.org/10.1016/j.jcis.2003.07.008 pmid: 14651902
23 Tang E J, Cheng G X, Pang X S, Ma X L, Xing F B. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property. Colloid & Polymer Science, 2006, 284(4): 422–428
https://doi.org/10.1007/s00396-005-1389-z
24 Kralj S, Drofenik M, Makovec D. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups. Journal of Nanoparticle Research, 2011, 13(7): 2829–2841
https://doi.org/10.1007/s11051-010-0171-4
25 Abdolmaleki A, Mallakpour S, Borandeh S. Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly(ester-amide) containing tyrosine linkages. Polymer Bulletin, 2012, 69(1): 15–28
https://doi.org/10.1007/s00289-011-0685-7
26 Pan A, He L. Fabrication pentablock copolymer/silica hybrids as self-assembly coatings. Journal of Colloid and Interface Science, 2014, 414: 1–8
https://doi.org/10.1016/j.jcis.2013.09.044 pmid: 24231077
27 Wang Z, Wu Z, Tang S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 2009, 43(9): 2504–2512
https://doi.org/10.1016/j.watres.2009.02.026 pmid: 19285331
28 Liang S, Xiao K, Wu J, Liang P, Huang X. Mechanism of membrane filterability amelioration via tuning mixed liquor property by pre-ozonation. Journal of Membrane Science, 2014, 454: 111–118
https://doi.org/10.1016/j.memsci.2013.11.037
29 Yu L Y, Xu Z L, Shen H M, Yang H. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. Journal of Membrane Science, 2009, 337(1–2): 257–265
https://doi.org/10.1016/j.memsci.2009.03.054
30 Liu F, Hashim N A, Liu Y T, Abed M R M, Li K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 2011, 375(1–2): 1–27
https://doi.org/10.1016/j.memsci.2011.03.014
31 Lin D J, Beltsios K, Young T H, Jeng Y S, Cheng L P. Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. Journal of Membrane Science, 2006, 274(1–2): 64–72
https://doi.org/10.1016/j.memsci.2005.07.043
32 Adout A, Kang S, Asatekin A, Mayes A M, Elimelech M. Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria. Environmental Science & Technology, 2010, 44(7): 2406–2411
https://doi.org/10.1021/es902908g pmid: 20192174
33 Shen Z Y, Chen Z, Hou Z, Li T T, Lu X X. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Frontiers of Environmental Science & Engineering, 2015, 9(5): 912–918
https://doi.org/10.1007/s11783-015-0789-7
34 Chang H Q, Liu B C, Luo W S, Li G B. Fouling mechanisms in the early stage of an enhanced coagulation-ultrafiltration process. Frontiers of Environmental Science & Engineering, 2015, 9(1): 73–83
https://doi.org/10.1007/s11783-014-0692-7
[1] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[2] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[3] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[4] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[5] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[6] Feng Zhu, Zhijian Yao, Wenliang Ji, Deye Liu, Hao Zhang, Aimin Li, Zongli Huo, Qing Zhou. An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters[J]. Front. Environ. Sci. Eng., 2020, 14(3): 51-.
[7] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[8] Kubra Ulucan-Altuntas, Eyup Debik. Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways[J]. Front. Environ. Sci. Eng., 2020, 14(1): 17-.
[9] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[10] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[11] Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao. G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance[J]. Front. Environ. Sci. Eng., 2019, 13(6): 81-.
[12] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
[13] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[14] Shuai Wang, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times[J]. Front. Environ. Sci. Eng., 2018, 12(2): 3-.
[15] Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi. Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor[J]. Front. Environ. Sci. Eng., 2017, 11(1): 9-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed