Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (1) : 9    https://doi.org/10.1007/s11783-021-1443-1
RESEARCH ARTICLE
The abundance, characteristics and diversity of microplastics in the South China Sea: Observation around three remote islands
Hongzhe Chen(), Sumin Wang, Huige Guo, Yunlong Huo, Hui Lin, Yuanbiao Zhang
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
 Download: PDF(793 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• A high abundance of floating MPs was found in the southern South China Sea.

• Transparent film and fiber were predominant in water and organisms, respectively.

• 84.7% of floating MPs and 54.5% of MPs in vivo belonged to PP and PE.

• Characteristics of MP in organisms were different from those of inshore ones.

Surrounded by emerging markets with considerable plastic consumption, the South China Sea has been a focus area of microplastic research. A survey on the floating microplastics (>0.3 mm) and microplastics ingested by fish and mollusks was conducted around three remote islands here. Compared with the results from several previous studies, a high abundance of floating microplastics (with a median of 1.9 × 105 items/km2 or 0.7 items/m3) was observed, revealing another “hot spot” for microplastics. Polyolefin, especially polypropylene, was the main component. The diversity index and evenness index were calculated and evaluated based on the composition of microplastics. The characteristic peaks of Raman spectra concerning pigmented microplastics were provided. Transparent sheets/films were predominant in the water sample, which was quite different from a similar study in this sea area (8.9% for film), and only 16.4% of floating microplastics (>0.3 mm) were fibers/lines, implying that the main sources of floating microplastics (>0.3 mm) might be household/agricultural consumption activities. The transparent fiber/line was also dominant in organisms. It is suggested that the main sources of microplastics ingested by organisms might be both fabric fibers and fishing/aquaculture.

Keywords Microplastics      Coral reefs      Abundance      Diversity      Characteristics     
Corresponding Author(s): Hongzhe Chen   
Issue Date: 08 December 2021
 Cite this article:   
Hongzhe Chen,Sumin Wang,Huige Guo, et al. The abundance, characteristics and diversity of microplastics in the South China Sea: Observation around three remote islands[J]. Front. Environ. Sci. Eng., 2022, 16(1): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1443-1
https://academic.hep.com.cn/fese/EN/Y2022/V16/I1/9
Site Number
(items)
Area a (m2) Average wind speed
(m/s)
Beaufort number Hsb
(m)
Ntowb Nb
(items/km2) (items/m3) (items/km2) (items/m3)
Meiji Reef
1 66 397 2.1 2 0.2 166,429 0.6 167,908 0.6
2 17 140 2.1 2 0.2 121,847 0.5 122,930 0.5
3 124 395 4.8 3 0.6 314,090 1.2 630,100 2.9
4 17 70 3.5 3 0.6 241,600 0.9 394,851 1.8
5 180 124 3.5 3 0.6 1,448,503 5.4 2,367,317 10.6
6 35 118 3.5 3 0.6 295,535 1.1 482,998 2.2
Chigua Reef
7 43 435 3.0 2 0.2 98,938 0.4 102,678 0.4
8 6 235 3.0 2 0.2 25,545 0.1 26,511 0.1
Huayang Reef
9 25 329 1.5 1 0.1 75,964 0.3 75,964 0.3
10 81 400 1.5 1 0.1 202,362 0.7 202,362 0.7
Tab.1  Observed quantity and abundance of floating MPs (0.3−5 mm), and correlating coefficients at each station
Species Parts Individuals Detection ratio Abundance
(items/g-wet weight) (items/individual)
Trochus niloticus Soft tissues 3 66.7% 0.05±0.05 5.67±5.51
Cephalopholis argus GIT 6 50.0% 0.16±0.18 0.50±0.55
Myripristis murdjan GIT 7 42.9% 0.30±0.45 0.71±0.95
Priacanthus macracanthus GIT 1 0.27 1
Sargocentron caudimaculatum GIT 1 1.57 4
Scarus festivus GIT 1 0.18 3
Tab.2  The detection ratio and abundance of MPs in soft tissues or gastrointestinal tracts (GIT) of different species
Fig.1  The percentages of MPs in different size groups. None of the MPs ingested by organisms were found in the size group of 2.5−5 mm.
Fig.2  The percentages of MPs with different shapes (a, b); different colors (c, d); different compositions (e, f). Pies a, c and e represent the data of floating MPs; b, d and f represent the data of MPs in organisms.
Fig.3  Raman spectra of field-collected PE (a) and PP (b) MPs with different colors (characteristic peaks of pigments/dyes>1,000 cm−1 are marked with red rings). The baselines of these spectra were corrected to remove the fluorescence background.
1 K L E Berry, H E Epstein, P J Lewis, N M Hall, A P Negri (2019). Microplastic contamination has limited effects on coral fertilisation and larvae. Diversity, 11(12): 228
https://doi.org/10.3390/d11120228
2 S B Borrelle, J Ringma, K L Law, C C Monnahan, L Lebreton, A McGivern, E Murphy, J Jambeck, G H Leonard, M A Hilleary, M Eriksen, H P Possingham, H De Frond, L R Gerber, B Polidoro, A Tahir, M Bernard, N Mallos, M Barnes, C M Rochman (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510): 1515–1518
https://doi.org/10.1126/science.aba3656 pmid: 32943526
3 M A Browne, P Crump, S J Niven, E Teuten, A Tonkin, T Galloway, R Thompson (2011). Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental Science & Technology, 45(21): 9175–9179
https://doi.org/10.1021/es201811s pmid: 21894925
4 L Burgio, R J H Clark (2001). Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 57(7): 1491–1521
https://doi.org/10.1016/S1386-1425(00)00495-9 pmid: 11446703
5 L Cabernard, L Roscher, C Lorenz, G Gerdts, S Primpke (2018). Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environmental Science & Technology, 52(22): 13279–13288
https://doi.org/10.1021/acs.est.8b03438 pmid: 30350953
6 M C Caggiani, A Cosentino, A Mangone (2016). Pigments Checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database. Microchemical Journal, 129: 123–132
https://doi.org/10.1016/j.microc.2016.06.020
7 M Cai, H He, M Liu, S Li, G Tang, W Wang, P Huang, G Wei, Y Lin, B Chen, J Hu, Z Cen (2018). Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Science of the Total Environment, 633: 1206–1216
https://doi.org/10.1016/j.scitotenv.2018.03.197 pmid: 29758873
8 H Chen, S Wang, H Guo, H Lin, Y Zhang, Z Long, H Huang (2019). Study of marine debris around a tourist city in East China: Implication for waste management. Science of the Total Environment, 676: 278–289
https://doi.org/10.1016/j.scitotenv.2019.04.335 pmid: 31048159
9 J C Chen, C Fang, R H Zheng, F K Hong, Y L Jiang, M Zhang, Y Li, F S Hamid, J Bo, L S Lin (2021). Microplastic pollution in wild commercial nekton from the South China Sea and Indian Ocean, and its implication to human health. Marine Environmental Research, 167: 105295
https://doi.org/10.1016/j.marenvres.2021.105295 pmid: 33714106
10 M Codina-García, T Militão, J Moreno, J González-Solís (2013). Plastic debris in Mediterranean seabirds. Marine Pollution Bulletin, 77(1-2): 220–226
https://doi.org/10.1016/j.marpolbul.2013.10.002 pmid: 24449923
11 F Collard, B Gilbert, G Eppe, E Parmentier, K Das (2015). Detection of anthropogenic particles in fish stomachs: An isolation method adapted to identification by Raman Spectroscopy. Archives of Environmental Contamination and Toxicology, 69(3): 331–339
https://doi.org/10.1007/s00244-015-0221-0 pmid: 26289815
12 K Critchell, M O Hoogenboom (2018). Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus). PLoS One, 13(3): e0193308
https://doi.org/10.1371/journal.pone.0193308 pmid: 29494635
13 G F de Carvalho-Souza, M Llope, M S Tinôco, D V Medeiros, R Maia-Nogueira, C L S Sampaio (2018). Marine litter disrupts ecological processes in reef systems. Marine Pollution Bulletin, 133: 464–471
https://doi.org/10.1016/j.marpolbul.2018.05.049 pmid: 30041338
14 G Dell’Ariccia, R A Phillips, J A van Franeker, N Gaidet, P Catry, J P Granadeiro, P G Ryan, F Bonadonna (2017). Comment on “Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds” by Savoca et al. Science Advances, 3(6): e1700526
https://doi.org/10.1126/sciadv.1700526 pmid: 28782012
15 I M Denekamp, F L P Veenstra, P Jungbacker, G Rothenberg (2019). A simple synthesis of symmetric phthalocyanines and their respective perfluoro and transition- metal complexes. Applied Organometallic Chemistry, 33(5): e4872
https://doi.org/10.1002/aoc.4872
16 J Ding, F Jiang, J Li, Z Wang, C Sun, Z Wang, L Fu, N X Ding, C He (2019). Microplastics in the coral reef systems from Xisha Islands of South China Sea. Environmental Science & Technology, 53(14): 8036–8046
https://doi.org/10.1021/acs.est.9b01452 pmid: 31204475
17 K Dowarah, S P Devipriya (2019). Microplastic prevalence in the beaches of Puducherry, India and its correlation with fishing and tourism/recreational activities. Marine Pollution Bulletin, 148: 123–133
https://doi.org/10.1016/j.marpolbul.2019.07.066 pmid: 31422297
18 R Dris, J Gasperi, V Rocher, B Tassin (2018). Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: Sampling methodological aspects and flux estimations. Science of the Total Environment, 618: 157–164
https://doi.org/10.1016/j.scitotenv.2017.11.009 pmid: 29128764
19 M Enfrin, L F Dumée, J Lee (2019). Nano/microplastics in water and wastewater treatment processes- Origin, impact and potential solutions. Water Research, 161: 621–638
https://doi.org/10.1016/j.watres.2019.06.049 pmid: 31254888
20 M Eriksen, L C M Lebreton, H S Carson, M Thiel, C J Moore, J C Borerro, F Galgani, P G Ryan, J Reisser (2014). Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One, 9(12): e111913
https://doi.org/10.1371/journal.pone.0111913 pmid: 25494041
21 S Estahbanati, N L Fahrenfeld (2016). Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere, 162: 277–284
https://doi.org/10.1016/j.chemosphere.2016.07.083 pmid: 27508863
22 C Fang, R Zheng, H Chen, F Hong, L Lin, H Lin, H Guo, C Bailey, H Segner, J Mu, J Bo (2019). Comparison of microplastic contamination in fish and bivalves from two major cities in Fujian province, China and the implications for human health. Aquaculture (Amsterdam, Netherlands), 512: 734322
https://doi.org/10.1016/j.aquaculture.2019.734322
23 C Fang, R Zheng, Y Zhang, F Hong, J Mu, M Chen, P Song, L Lin, H Lin, F Le, J Bo (2018). Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere, 209: 298–306
https://doi.org/10.1016/j.chemosphere.2018.06.101 pmid: 29933166
24 GESAMP (2019). Guidelines or the monitoring and assessment of plastic litter and microplastics in the ocean. Kershaw P J, Turra A and Galgani F eds. GESAMP (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) Report and Studies No. 99, 130p
25 M C Goldstein, A J Titmus, M Ford (2013). Scales of spatial heterogeneity of plastic marine debris in the northeast Pacific Ocean. PLoS One, 8(11), e80020 doi:10.1371/journal.pone.0080020 PMID:24278233
26 P T Harris, J Tamelander, Y Lyons, M L Neo, T Maes (2021). Taking a mass-balance approach to assess marine plastics in the South China Sea. Marine Pollution Bulletin, 171: 112708
https://doi.org/10.1016/j.marpolbul.2021.112708 pmid: 34273726
27 H Hidayaturrahman, T G Lee (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146: 696–702
https://doi.org/10.1016/j.marpolbul.2019.06.071 pmid: 31426211
28 Y Huang, M Yan, K Xu, H Nie, H Gong, J Wang (2019). Distribution characteristics of microplastics in Zhubi Reef from South China Sea. Environmental pollution (Barking, Essex: 1987), 255(Pt 1): 113133
https://doi.org/10.1016/j.envpol.2019.113133 pmid: 31536879
29 H K Imhof, C Laforsch, A C Wiesheu, J Schmid, P M Anger, R Niessner, N P Ivleva (2016). Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Research, 98: 64–74
https://doi.org/10.1016/j.watres.2016.03.015 pmid: 27082693
30 J R Jambeck, R Geyer, C Wilcox, T R Siegler, M Perryman, A Andrady, R Narayan, K L Law (2015). Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771
https://doi.org/10.1126/science.1260352 pmid: 25678662
31 L H Jensen, C A Motti, A L Garm, H Tonin, F J Kroon (2019). Sources, distribution and fate of microfibres on the Great Barrier Reef, Australia. Scientific Reports, 9(1): 9021
https://doi.org/10.1038/s41598-019-45340-7 pmid: 31227771
32 A Karami, A Golieskardi, C Keong Choo, V Larat, T S Galloway, B Salamatinia (2017). The presence of microplastics in commercial salts from different countries. Scientific Reports, 7(1): 46173
https://doi.org/10.1038/srep46173 pmid: 28383020
33 C M Lanctôt, V N Bednarz, S Melvin, H Jacob, F Oberhaensli, P W Swarzenski, C Ferrier-Pagès, A R Carroll, M Metian (2020). Physiological stress response of the scleractinian coral Stylophora pistillata exposed to polyethylene microplastics. Environmental Pollution, 263 (Part A): 114559
34 L C M Lebreton, J C Borrero (2013). Modeling the transport and accumulation floating debris generated by the 11 March 2011 Tohoku tsunami. Marine Pollution Bulletin, 66(1–2): 53–58
https://doi.org/10.1016/j.marpolbul.2012.11.013 pmid: 23219397
35 L C M Lebreton, J van der Zwet, J W Damsteeg, B Slat, A Andrady, J Reisser (2017). River plastic emissions to the world’s oceans. Nature Communications, 8(1): 15611
https://doi.org/10.1038/ncomms15611 pmid: 28589961
36 P Lestari, Y Trihadiningrum (2019). The impact of improper solid waste management to plastic pollution in Indonesian coast and marine environment. Marine Pollution Bulletin, 149: 110505
https://doi.org/10.1016/j.marpolbul.2019.110505 pmid: 31442864
37 J Y Liu (2013a). Status of marine biodiversity of the China seas. PLoS One, 8(1): e50719
https://doi.org/10.1371/journal.pone.0050719 pmid: 23320065
38 R Liu (2013b). Marine Organism (in Chinese). In: Wang Y eds. China’s Marine Geography. Beijing: Science Press,245–409
39 C Ma, K You, M Zhang, F Li, D Chen (2008). A preliminary study on the diversity of fish species and marine fish faunas of the South China Sea. Journal of Ocean University of China, 7(2): 210–214
https://doi.org/10.1007/s11802-008-0210-2
40 J Marshell (2010). FT Raman spectrum and band assignments for metal–free phthalocyanine (H2Pc). Material Science Research India, 7(1): 221–224
https://doi.org/10.13005/msri/070128
41 J Masura, J Baker, G Foster, C Arthur (2015). Laboratory methods for the analysis of microplastics in the marine environment: Recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48. Available online at (accessed December 18, 2019)
42 Y Michida, S Chavanich, A C Cabañas, P Hagmann, H Hinata, A Isobe, P Kershaw, N Kozlovskii, D Li, A L Lusher, E Martí, S A Mason, J Mu, H Saito, W J Shim, A D Syakti, H Takada, R Thompson, T Tokai, K Uchida, K Vasilenko, J Wang (2019). Guidelines for harmonizing ocean surface microplastic monitoring methods. Ministry of the Environment Japan, 71 pp. Available online at website of www.env.go.jp (accessed December 18, 2019)
43 K Min, J D Cuiffi, R T Mathers (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nature Communications, 11(1): 727
https://doi.org/10.1038/s41467-020-14538-z pmid: 32024839
44 S Montano, D Seveso, D Maggioni, P Galli, S Corsarini, F Saliu (2020). Spatial variability of phthalates contamination in the reef-building corals Porites lutea, Pocillopora verrucosa and Pavona varians. Marine Pollution Bulletin, 155: 111117
https://doi.org/10.1016/j.marpolbul.2020.111117 pmid: 32469762
45 C Moore, C Phillip (2011). Plastic Ocean: How a Sea Captain’s Chance Discovery Launched a Determined Quest to Save the Oceans. 1st ed. New York: Penguin Group (USA) Inc.
46 C Munari, C Corbau, U Simeoni, M Mistri (2016). Marine litter on Mediterranean shores: Analysis of composition, spatial distribution and sources in north-western Adriatic beaches. Waste Management (New York, N.Y.), 49: 483–490
https://doi.org/10.1016/j.wasman.2015.12.010 pmid: 26725754
47 H Nie, J Wang, K Xu, Y Huang, M Yan (2019). Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. Science of the Total Environment, 696: 134022
https://doi.org/10.1016/j.scitotenv.2019.134022 pmid: 31470325
48 M R de Orte, S Clowez, K Caldeira (2019). Response of bleached and symbiotic sea anemones to plastic microfiber exposure. Environmental Pollution (Barking, Essex: 1987), 249: 512–517
https://doi.org/10.1016/j.envpol.2019.02.100 pmid: 30928523
49 Z Pan, H Guo, H Chen, S Wang, X Sun, Q Zou, Y Zhang, H Lin, S Cai, J Huang (2019). Microplastics in the Northwestern Pacific: Abundance, distribution, and characteristics. Science of the Total Environment, 650(Pt 2): 1913–1922
https://doi.org/10.1016/j.scitotenv.2018.09.244 pmid: 30286357
50 X Peng, M Chen, S Chen, S Dasgupta, H Xu, K Ta, M Du, J Li, Z Guo, S Bai (2018). Microplastics contaminate the deepest part of the world’s ocean. Geochemical Perspectives Letters, 9: 1–5
https://doi.org/10.7185/geochemlet.1829
51 J Reichert, A L Arnold, M O Hoogenboom, P Schubert, T Wilke (2019). Impacts of microplastics on growth and health of hermatypic corals are species-specific. Environmental Pollution, 254 (B): 113074
52 J Reichert, J Schellenberg, P Schubert, T Wilke (2018). Responses of reef building corals to microplastic exposure. Environmental Pollution (Barking, Essex: 1987), 237: 955–960
https://doi.org/10.1016/j.envpol.2017.11.006 pmid: 29146203
53 J Reisser, B Slat, K Noble, K du Plessis, M Epp, M Proietti, J de Sonneville, T Becker, C Pattiaratchi (2015). The vertical distribution of buoyant plastics at sea: An observational study in the North Atlantic Gyre. Biogeosciences, 12(4): 1249–1256
https://doi.org/10.5194/bg-12-1249-2015
54 F Saliu, S Montano, B Leoni, M Lasagni, P Galli (2019). Microplastics as a threat to coral reef environments: Detection of phthalate esters in neuston and scleractinian corals from the Faafu Atoll, Maldives. Marine Pollution Bulletin, 142: 234–241
https://doi.org/10.1016/j.marpolbul.2019.03.043 pmid: 31232298
55 M S Savoca, M E Wohlfeil, S E Ebeler, G A Nevitt (2016). Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science Advances, 2(11): e1600395
https://doi.org/10.1126/sciadv.1600395 pmid: 28861463
56 E J Shaw, A Turner (2019). Recycled electronic plastic and marine litter. Science of the Total Environment, 694: 133644
https://doi.org/10.1016/j.scitotenv.2019.133644 pmid: 31756839
57 W J Shim, S H Hong, S Eo (2017). Identification methods in microplastic analysis: A review. Analytical Methods, 9(9): 1384–1391
https://doi.org/10.1039/C6AY02558G
58 C Sparks, S Immelman (2020). Microplastics in offshore fish from the Agulhas Bank, South Africa. Marine Pollution Bulletin, 156: 111216
https://doi.org/10.1016/j.marpolbul.2020.111216 pmid: 32366369
59 G Suaria, V Perold, J R Lee, F Lebouard, S Aliani, P G Ryan (2020). Floating macro- and microplastics around the Southern Ocean: Results from the Antarctic Circumnavigation Expedition. Environment International, 136: 105494
https://doi.org/10.1016/j.envint.2020.105494 pmid: 31999968
60 Z D Taha, R Md Amin, S T Anuar, A A Nasser, E S Sohaimi (2021). Microplastics in seawater and zooplankton: A case study from Terengganu estuary and offshore waters, Malaysia. Science of the Total Environment, 786: 147466
https://doi.org/10.1016/j.scitotenv.2021.147466 pmid: 33984707
61 M Tamminga, S-C Stoewer, E K Fischer (2019). On the representativeness of pump water samples versus manta sampling in microplastic analysis. Environmental Pollution (Barking, Essex: 1987), 254(Pt A): 112970 doi:10.1016/j.envpol.2019.112970 PMID:31377328
62 F Tan, H Yang, X Xu, Z Fang, H Xu, Q Shi, X Zhang, G Wang, L Lin, S Zhou, L Huang, H Li (2020). Microplastic pollution around remote uninhabited coral reefs of Nansha Islands, South China Sea. Science of the Total Environment, 725: 138383
https://doi.org/10.1016/j.scitotenv.2020.138383 pmid: 32283309
63 W Tan, D Cui, B Xi (2021). Moving policy and regulation forward for single-use plastic alternatives. Frontiers of Environmental Science & Engineering, 15(3): 50
https://doi.org/10.1007/s11783-021-1423-5
64 G Tang, M Liu, Q Zhou, H He, K Chen, H Zhang, J Hu, Q Huang, Y Luo, H Ke, B Chen, X Xu, M Cai (2018a). Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts. Science of the Total Environment, 634: 811–820
https://doi.org/10.1016/j.scitotenv.2018.03.336 pmid: 29653425
65 J Tang, X Z Ni, Z Zhou, L G Wang, S J Lin (2018b). Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environmental Pollution (Barking, Essex: 1987), 243(Pt A): 66–74 doi:10.1016/j.envpol.2018.08.045 PMID:30172125
66 J Tang, Z Wu, L Wan, W Cai, S Chen, X Wang, J Luo, Z Zhou, J Zhao, S Lin (2021). Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ. Journal of Hazardous Materials, 404(Pt B): 124205
https://doi.org/10.1016/j.jhazmat.2020.124205 pmid: 33086184
67 E van Sebille, S Aliani, K L Law, N Maximenko, J M Alsina, A Bagaev, M Bergmann, B Chapron, I Chubarenko, A Cózar, P Delandmeter, M Egger, B Fox-Kemper, S P Garaba, L Goddijn-Murphy, B D Hardesty, M J Hoffman, A Isobe, C E Jongedijk, M L A Kaandorp, L Khatmullina, A A Koelmans, T Kukulka, C Laufkötter, L Lebreton, D Lobelle, C Maes, V Martinez-Vicente, M A M Maqueda, M Poulain-Zarcos, E Rodríguez, P G Ryan, A L Shanks, W J Shim, G Suaria, M Thiel, T S van den Bremer, D Wichmann (2020). The physical oceanography of the transport of floating marine debris. Environmental Research Letters, 15(2): 023003
https://doi.org/10.1088/1748-9326/ab6d7d
68 E van Sebille, C Wilcox, L Lebreton, N Maximenko, B D Hardesty, J A van Franeker, M Eriksen, D Siegel, F Galgani, K L Law (2015). A global inventory of small floating plastic debris. Environmental Research Letters, 10(12): 124006
https://doi.org/10.1088/1748-9326/10/12/124006
69 S Wang, H Chen, X Zhou, Y Tian, C Lin, W Wang, K Zhou, Y Zhang, H Lin (2020). Microplastic abundance, distribution and composition in the mid-west Pacific Ocean. Environmental Pollution (Barking, Essex: 1987), 264: 114125
https://doi.org/10.1016/j.envpol.2020.114125 pmid: 32387995
70 T Wang, X Zou, B Li, Y Yao, Z Zang, Y Li, W Yu, W Wang (2019). Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example. Environmental Pollution (Barking, Essex: 1987), 245: 965–974
https://doi.org/10.1016/j.envpol.2018.10.110 pmid: 30682753
71 WTO (2020). World trade statistical review 2020 Chapter IV Shifting patterns in trade. Available online at the website of (accessed March 2, 2021)
72 P Wu, J Huang, Y Zheng, Y Yang, Y Zhang, F He, H Chen, G Quan, J Yan, T Li, B Gao (2019). Environmental occurrences, fate, and impacts of microplastics. Ecotoxicology and Environmental Safety, 184: 109612
https://doi.org/10.1016/j.ecoenv.2019.109612 pmid: 31476450
73 E G Xu, Z J Ren (2021). Preventing masks from becoming the next plastic problem. Frontiers of Environmental Science & Engineering, 15(6): 125 doi:10.1007/s11783-021-1413-7
74 S Zhao, M Danley, J E Ward, D Li, T C Mincer (2017). An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Analytical Methods, 9(9): 1470–1478
https://doi.org/10.1039/C6AY02302A
75 C Zhu, D Li, Y Sun, X Zheng, X Peng, K Zheng, B Hu, X Luo, B Mai (2019a). Plastic debris in marine birds from an island located in the South China Sea. Marine Pollution Bulletin, 149: 110566
https://doi.org/10.1016/j.marpolbul.2019.110566 pmid: 31543495
76 J Zhu, Q Zhang, Y Li, S Tan, Z Kang, X Yu, W Lan, L Cai, J Wang, H Shi (2019b). Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Science of the Total Environment, 658: 62–68
https://doi.org/10.1016/j.scitotenv.2018.12.192 pmid: 30577027
[1] FSE-21113-OF-CHZ_suppl_1 Download
[1] Wenwen Gong, Yu Xing, Lihua Han, Anxiang Lu, Han Qu, Li Xu. Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China[J]. Front. Environ. Sci. Eng., 2022, 16(9): 113-.
[2] Xue Bai, Chang Li, Lingyu Ma, Pei Xin, Fengjie Li, Zhenjia Xu. Quantitative analysis of microplastics in coastal tidal-flat reclamation in Dongtai, China[J]. Front. Environ. Sci. Eng., 2022, 16(8): 107-.
[3] Jie Wu, Jian Lu, Jun Wu. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(8): 104-.
[4] Ying Cai, Jun Wu, Jian Lu, Jianhua Wang, Cui Zhang. Fate of microplastics in a coastal wastewater treatment plant: Microfibers could partially break through the integrated membrane system[J]. Front. Environ. Sci. Eng., 2022, 16(7): 96-.
[5] Jinkai Xue, Seyed Hesam-Aldin Samaei, Jianfei Chen, Ariana Doucet, Kelvin Tsun Wai Ng. What have we known so far about microplastics in drinking water treatment? A timely review[J]. Front. Environ. Sci. Eng., 2022, 16(5): 58-.
[6] Nan Yang, Linqiong Wang, Li Lin, Yi Li, Wenlong Zhang, Lihua Niu, Huanjun Zhang, Longfei Wang. Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a cascade-dammed river[J]. Front. Environ. Sci. Eng., 2022, 16(4): 50-.
[7] Zhike Li, Jie Chi, Zhenyu Wu, Yiyan Zhang, Yiran Liu, Lanlan Huang, Yiren Lu, Minhaz Uddin, Wei Zhang, Xuejun Wang, Yan Lin, Yindong Tong. Characteristics of plankton Hg bioaccumulations based on a global data set and the implications for aquatic systems with aggravating nutrient imbalance[J]. Front. Environ. Sci. Eng., 2022, 16(3): 37-.
[8] Jian Lu, Jun Wu, Jianhua Wang. Metagenomic analysis on resistance genes in water and microplastics from a mariculture system[J]. Front. Environ. Sci. Eng., 2022, 16(1): 4-.
[9] Xianying Ma, Xinhui Zhou, Mengjie Zhao, Wenzhuo Deng, Yanxiao Cao, Junfeng Wu, Jingcheng Zhou. Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions[J]. Front. Environ. Sci. Eng., 2022, 16(1): 3-.
[10] Zuyin Chen, Lihua Li, Lichong Hao, Yu Hong, Wencai Wang. Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(1): 2-.
[11] Neha Badola, Ashish Bahuguna, Yoel Sasson, Jaspal Singh Chauhan. Microplastics removal strategies: A step toward finding the solution[J]. Front. Environ. Sci. Eng., 2022, 16(1): 7-.
[12] Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 1-.
[13] K. Dhineka, M. Sambandam, S. K. Sivadas, T. Kaviarasan, Umakanta Pradhan, Mehmuna Begum, Pravakar Mishra, M. V. Ramana Murthy. Characterization and seasonal distribution of microplastics in the nearshore sediments of the south-east coast of India, Bay of Bengal[J]. Front. Environ. Sci. Eng., 2022, 16(1): 10-.
[14] Wen Zhang, Qi Wang, Hao Chen. Challenges in characterization of nanoplastics in the environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 11-.
[15] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed