Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (11) : 140    https://doi.org/10.1007/s11783-023-1740-y
RESEARCH ARTICLE
Enhanced separation of tetrafluoropropanol from water via carbon nanotubes membranes: insights from molecular dynamics simulations
Qing Li1, Xiaomeng Wang1, Ying Liu1, Zhun Ma1(), Qun Wang1, Dongmei Xu1(), Jun Gao1, Ruirui Wu2, Hui Sun3, Xueli Gao4()
1. College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. SEPCOIII Electric Power Construction Co. Ltd., Qingdao 266100, China
3. State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
4. Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), Ocean University of China, Qingdao 266100, China
 Download: PDF(6346 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● MD simulations unveil the transport mechanism for TFP-water mixture through CNTs.

● The (7,7) CNTs provided a dramatic mass fraction (97.51%) of TFP.

● Fluorine modified CNTs favor water preferential transport compare to pristine CNTs.

● CNTs modified at entrance and interior prompt permselectivity for water molecules.

Fluorinated alcohols exhibit promising prospects in chemical industry because of their special structure and many exciting properties, in which tetrafluoropropanol (TFP) is extensive applied in synthesis of pesticides, dyestuffs, variety of solvents and detergents. However, the presence of TFP in water garners increasing attention globally because of their intrinsic potential to threat ecosystems and human health. Carbon nanotubes (CNTs) membranes are burgeoning candidates for TFP-water separation owing to well-endowed extraordinary structural and transport properties. However, a grand challenge lies in the rational design of CNTs for improving separation performance. Herein, molecular dynamics (MD) simulations were performed to investigate the effects of various parameters on the separation of TFP-water mixtures including feed temperature, CNTs pore diameters, and fluorine functionalization position. It was found that TFP was pre-selected in CNTs ranging from 9.48 to 18.98 Å due to preferential adsorption and diffusion mechanism. Excellent separation factor of 16 was achieved by (7,7) CNTs and the mass fraction of TFP was purified from 75% to 97.51%. Fluorine modified CNTs separated TFP and water by preferentially permeating water due to hydrogen bonding interaction. Simulation results showed that CNTs modified at both the entrance and interior had better separation performance than CNT modified only at one of these positions. The 100wt% water content in permeate was achieved by (11,11) CNTs modified with fluorine at the entrance and interior. These findings provide valuable insights for designing potential candidates for fluorinated alcohol-water azeotropic mixtures membrane separation, and promise extensive application aspects for the reclamation of fluorinated alcohol.

Keywords Fluorinated alcohol      Carbon nanotube      Molecular simulation      Fluorine modified     
Corresponding Author(s): Zhun Ma,Dongmei Xu,Xueli Gao   
Issue Date: 15 November 2023
 Cite this article:   
Qing Li,Xiaomeng Wang,Ying Liu, et al. Enhanced separation of tetrafluoropropanol from water via carbon nanotubes membranes: insights from molecular dynamics simulations[J]. Front. Environ. Sci. Eng., 2023, 17(11): 140.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1740-y
https://academic.hep.com.cn/fese/EN/Y2023/V17/I11/140
Fig.1  Schematic of simulation box consists of a feed solution contains TFP and water molecules, a CNTs pervaporation membrane and a vacuum section representing the filtered layer.
Fig.2  TFP and water fluxes and separation factor of TFP(α) as a function of temperature.
Fig.3  TFP and water fluxes in CNTs membrane and mass fraction of TFP.
Fig.4  The distribution of TFP and water molecules in the CNTs membrane: (5,5) CNTs (a), (6,6) CNTs (b).
Fig.5  TFP/water structures inside (7,7), (11,11) and (14,14) CNTs (red: TFP molecules; blue: water molecules) (a); Density distribution profiles of TFP molecules in the CNTs, and y = 0 corresponds to the middle position of CNTs (b).
Fig.6  Deformation charge density distributions for guest molecules adsorbed on the CNTs pores: TFP (a) and water (b) (gray: electron loss; blue: electron gain).
Fig.7  TFP and water fluxes in entrance fluorine modification CNTs membrane and mass fraction of water.
Fig.8  TFP/water structures inside modified (10,10) CNTs (red: TFP molecules; blue: water molecules; pink: F groups) (a); Density distribution profiles of TFP molecules in the CNTs, and y = 0 corresponds to the middle position of CNTs (b).
Fig.9  TFP/water structures inside modified (11,11) CNTs (red: TFP molecules; blue: water molecules, pink: F groups doped in entrance and interior) (a); Density distribution profiles of TFP/water molecules in the CNTs, and y = 0 corresponds to the middle position of CNTs (b).
Fig.10  PMF profiles for TFP (a) and water molecule (b) in fluorine modified CNTs, where the CNTs lies from z = −14 to z = 14 Å, the center of CNTs is z = 0 Å. C10-em represents entrance and interior modified CNTs, C10-m represents interior modified CNTs, and C10-e represents entrance modified CNTs.
1 S Aydin, H Yesil, A E Tugtas. (2018). Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresources and Bioprocessing, 250: 548–555
2 M I Baig, P G Ingole, J D Jeon, S U Hong, W K Choi, B Jang, H K Lee. (2019). Water vapor selective thin film nanocomposite membranes prepared by functionalized silicon nanoparticles. Desalination, 451(1): 59–71
https://doi.org/10.1016/j.desal.2017.06.005
3 F Banihashemi, J Y S Lin. (2022). B-oriented MFI zeolite membranes for xylene isomer separation: effect of xylene activity on separation performance. Journal of Membrane Science, 652(15): 120492
https://doi.org/10.1016/j.memsci.2022.120492
4 S Bano, A Mahmood, K H Lee. (2013). Vapor permeation separation of methanol–water mixtures: effect of experimental conditions. Industrial & Engineering Chemistry Research, 52(31): 10450–10459
https://doi.org/10.1021/ie302986y
5 R J Castellano, R F Praino, E R Meshot, C Chen, F Fornasiero, J W Shan. (2020). Scalable electric-field-assisted fabrication of vertically aligned carbon nanotube membranes with flow enhancement. Carbon, 157: 208–216
https://doi.org/10.1016/j.carbon.2019.10.012
6 E Darve, D Rodríguez-Gómez, A Pohorille. (2008). Adaptive biasing force method for scalar and vector free energy calculations. Journal of Chemical Physics, 128(14): 144120–144133
https://doi.org/10.1063/1.2829861
7 R Das, M E Ali, S B A Hamid, S Ramakrishna, Z Z Chowdhury. (2014). Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination, 336: 97–109
https://doi.org/10.1016/j.desal.2013.12.026
8 B Delley. (1990). An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 92(1): 508–517
https://doi.org/10.1063/1.458452
9 W Fan, S He, Z Wang, P Zhao, J Gao, D Xu, Y Wang. (2022). Comparative evaluation of liquid–liquid equilibria for extraction of 2,2,3,3-tetrafluoro-1-propanol from water by a ZIF-8-porous ionic liquid. Journal of Chemical Technology and Biotechnology, 97(4): 933–942
https://doi.org/10.1002/jctb.6979
10 J Gao, L Zhao, L Zhang, D Xu, Z Zhang. (2016). Isobaric vapor–liquid equilibrium for binary systems of 2,2,3,3-tetrafluoro-1-propanol+2,2,3,3,4,4,5,5-octafluoro-1-pentanol at 53.3, 66.7, 80.0 kPa. Journal of Chemical & Engineering Data, 61(9): 3371–3376
https://doi.org/10.1021/acs.jced.6b00429
11 K M Gupta, J Liu, J Jiang. (2019). A molecular simulation protocol for membrane pervaporation. Journal of Membrane Science, 572: 676–682
https://doi.org/10.1016/j.memsci.2018.11.052
12 O Gupta, S Roy, S Mitra. (2020). Low temperature recovery of acetone–butanol–ethanol (ABE) fermentation products via microwave induced membrane distillation on carbon nanotube immobilized membranes. Sustainable Energy & Fuels, 4(7): 3487–3499
https://doi.org/10.1039/D0SE00461H
13 J Hénin, G Fiorin, C Chipot, M L Klein. (2010). Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. Journal of Chemical Theory and Computation, 6(1): 35–47
https://doi.org/10.1021/ct9004432
14 S Y Hu, Y Zhang, D Lawless, X Feng (2012). Composite membranes comprising of polyvinylamine-poly(vinyl alcohol) incorporated with carbon nanotubes for dehydration of ethylene glycol by pervaporation. Journal of Membrane Science, 417–418: 34–44
https://doi.org/10.1016/j.memsci.2012.06.010
15 K Huang, G Liu, Y Lou, Z Dong, J Shen, W Jin. (2014). A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie, 126(27): 7049–7052
https://doi.org/10.1002/ange.201401061
16 A Ibrahim, Y S Lin. (2016). Pervaporation separation of organic mixtures by MOF-5 membranes. Industrial & Engineering Chemistry Research, 55(31): 8652–8658
https://doi.org/10.1021/acs.iecr.6b01965
17 Ihsanullah. (2019). Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separation and Purification Technology, 209: 307–337
https://doi.org/10.1016/j.seppur.2018.07.043
18 W Jia, S Murad. (2006). Molecular dynamics simulation of pervaporation in zeolite membranes. Molecular Physics, 104(19): 3033–3043
https://doi.org/10.1080/00268970600946793
19 W B Kong, Q Miao, P Y Qin, J Baeyens, T W Tan. (2017). Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression. Frontiers of Environmental Science & Engineering, 11(2): 166–176
20 Q Li, D Yang, J Shi, X Xu, S Yan, Q Liu. (2016). Biomimetic modification of large diameter carbon nanotubes and the desalination behavior of its reverse osmosis membrane. Desalination, 379: 164–171
https://doi.org/10.1016/j.desal.2015.11.008
21 Y Li, Y Li, Z Yang, W Xu, T Gui, X Wu, M Zhu, X Chen, H Kita. (2023). Rapid synthesis of high-selective Al-rich beta zeolite membrane via an organic template-free route for pervaporation dehydration of water-n-butanol mixtures. Separation and Purification Technology, 308: 122969
https://doi.org/10.1016/j.seppur.2022.122969
22 J P Liu, W Q Jin. (2021). Pervaporation membrane materials: recent trends and perspectives. Journal of Membrane Science, 636: 119557
https://doi.org/10.1016/j.memsci.2021.119557
23 Q Liu, H Zhu, G Liu, W Jin. (2022a). Efficient separation of (C1–C2) alcohol solutions by graphyne membranes: a molecular simulation study. Journal of Membrane Science, 644: 120139
https://doi.org/10.1016/j.memsci.2021.120139
24 S Liu, G Y Zhou, G B Cheng, X K Wang, G P Liu, W Q Jin. (2022b). Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Separation and Purification Technology, 299: 121729
https://doi.org/10.1016/j.seppur.2022.121729
25 C H Lo, W S Hung, S H Huang, M D Guzman, V Rouessac, K R Lee, J Y Lai. (2009). Plasma deposition of tetraethoxysilane on polycarbonate membrane for pervaporation of tetrafluoropropanol aqueous solution. Journal of Membrane Science, 329(1–2): 138–145
https://doi.org/10.1016/j.memsci.2008.12.029
26 W Ma, Z Jiang, T Lu, R Xiong, C Huang. (2022). Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chemical Engineering Journal, 430(3): 132989
https://doi.org/10.1016/j.cej.2021.132989
27 A D MacKerell, D Bashford, M Bellott, R L Jr Dunbrack, J D Evanseck, M J Field, S Fischer, J Gao, H Guo, S Ha. et al.. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18): 3586–3616
https://doi.org/10.1021/jp973084f
28 M Majumder, N Chopra, R Andrews, B J Hinds. (2005). Enhanced flow in carbon nanotubes. Nature, 438(44): 930
https://doi.org/10.1038/438930b
29 S S Meshkat, E Ghasemy, A Rashidi, O Tavakoli, M Esrafili. (2021). Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: equilibrium & kinetic study. Frontiers of Environmental Science & Engineering, 15(5): 109
https://doi.org/10.1007/s11783-021-1397-3
30 A Panahi, A Shomali, M H Sabour, E Ghafar-Zadeh. (2019). Molecular dynamics simulation of electric field driven water and heavy metals transport through fluorinated carbon nanotubes. Journal of Molecular Liquids, 278: 658–671
https://doi.org/10.1016/j.molliq.2019.01.084
31 S Panahian, A Raisi, A Aroujalian. (2015). Multilayer mixed matrix membranes containing modified-MWCNTs for dehydration of alcohol by pervaporation process. Desalination, 355: 45–55
https://doi.org/10.1016/j.desal.2014.10.027
32 Perdew. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
33 J C Phillips, R Braun, W Wang, J Gumbart, E Tajkhorshid, E Villa, C Chipot, R D Skeel, L Kale, K Schulten. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16): 1781–1802
https://doi.org/10.1002/jcc.20289
34 Z Raeisi, A Moheb, M N Arani, M Sadeghi. (2021). Non-covalently-functionalized CNTs incorporating poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures. Chemical Engineering Research & Design, 167: 157–168
https://doi.org/10.1016/j.cherd.2021.01.004
35 C Schepers, D Hofmann. (2006). Molecular simulation study on sorption and diffusion processes in polymeric pervaporation membrane materials. Molecular Simulation, 32(2): 73–83
https://doi.org/10.1080/08927020500474292
36 P Shi, Y Gao, J Wu, D Xu, J Gao, X Ma, Y Wang. (2017). Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol+water): isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation. Journal of Chemical Thermodynamics, 115: 19–26
https://doi.org/10.1016/j.jct.2017.07.019
37 P Shi, D Xu, J Ding, J Wu, Y Ma, J Gao, Y Wang. (2018). Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol+water) via heterogeneous azeotropic distillation by energy-saving dividing-wall column: process design and control strategies. Chemical Engineering Research & Design, 135: 52–66
https://doi.org/10.1016/j.cherd.2018.05.025
38 J A Therattil, A K S, L A Pothan, H J Maria, N Kalarikal, S Thomas. (2021). Natural rubber/carbon nanotube/ionic liquid composite membranes: vapor permeation and gas permeability properties. Macromolecular Symposia, 398(1): 2000222
https://doi.org/10.1002/masy.202000222
39 C Tseng, Y L Liu. (2023). Poly(vinyl alcohol)/carbon nanotube (CNT) membranes for pervaporation dehydration: the effect of functionalization agents for CNT on pervaporation performance. Journal of Membrane Science, 668: 121185
https://doi.org/10.1016/j.memsci.2022.121185
40 L Vane, V Namboodiri, G Lin, M Abar, F Alvarez. (2016). Preparation of water-selective polybutadiene membranes and their use in drying alcohols by pervaporation and vapor permeation technologies. ACS Sustainable Chemistry & Engineering, 4(8): 4442–4450
https://doi.org/10.1021/acssuschemeng.6b01072
41 F Wei, B Diao, J Gao, D Xu, L Zhang, Y Ma, Y Wang. (2021a). Process design, evaluation and control for separation of 2,2,3,3-tetrafluoro-1-propanol and water by extractive distillation using ionic liquid 1-ethyl-3-methylimidazolium acetate. Journal of Chemical Technology and Biotechnology, 96(11): 3175–3184
https://doi.org/10.1002/jctb.6872
42 S Wei, L Du, S Chen, H T Yu, X Quan. (2021b). Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Frontiers of Environmental Science & Engineering, 15(1): 11
https://doi.org/10.1007/s11783-020-1303-4
43 Y Wu, L Ding, Z Lu, J Deng, Y Wei. (2019). Two-dimensional MXene membrane for ethanol dehydration. Journal of Membrane Science, 590: 117300
https://doi.org/10.1016/j.memsci.2019.117300
44 D Xu, L Zhang, J Gao, D Pratik, L Zhao, Z Cui. (2017). Liquid-liquid equilibrium for ternary systems of ethyl acetate/isopropyl acetate+2,2,3,3-tetrafluoro-1-propanol+water at 298.15, 318.15 K. Journal of Chemical Thermodynamics, 106: 218–227
https://doi.org/10.1016/j.jct.2016.12.006
45 D Xu, L Zhang, J Gao, Z S Zhang, Z F Cui. (2016). Measurement and correlation of liquideliquid equilibrium for the ternary system 2,2,3,3,4,4,5,5-octafluoro-1-pentanol+methanol+water at (298.15, 308.15, and 318.15 K). Fluid Phase Equilibria, 409: 377–382
https://doi.org/10.1016/j.fluid.2015.10.039
46 Q Xu, J Jiang. (2019). Effects of functionalization on the nanofiltration performance of PIM-1: molecular simulation investigation. Journal of Membrane Science, 591: 117357
https://doi.org/10.1016/j.memsci.2019.117357
47 Y Xu, Z Hu, Z Liu, H Zhu, Y Yan, J Xu, C Yang. (2021). Molecular simulations on tuning the interlayer spacing of graphene nanoslits for C4H6/C4H10 separation. ACS Applied Nano Materials, 4(2): 1994–2001
https://doi.org/10.1021/acsanm.0c03336
48 D Yang, C Cheng, M Bao, L Chen, Y Bao, C Xue. (2019). The pervaporative membrane with vertically aligned carbon nanotube nanochannel for enhancing butanol recovery. Journal of Membrane Science, 577: 51–59
https://doi.org/10.1016/j.memsci.2019.01.032
49 D Yang, Q Liu, H Li, C Gao. (2013). Molecular simulation of carbon nanotube membrane for Li+ and Mg2+ separation. Journal of Membrane Science, 444: 327–331
https://doi.org/10.1016/j.memsci.2013.05.019
50 D Yang, D Tian, C Xue, F Gao, Y Liu, H Li, Y Bao, J Liang, Z Zhao, J Qiu. (2018). Tuned fabrication of the aligned and opened CNT membrane with exceptionally high permeability and selectivity for bioalcohol recovery. Nano Letters, 18(10): 6150–6156
https://doi.org/10.1021/acs.nanolett.8b01831
51 G Yang, Z Xie, C M Doherty, M Cran, D Ng, S Gray. (2020). Understanding the transport enhancement of poly (vinyl alcohol) based hybrid membranes with dispersed nanochannels for pervaporation application. Journal of Membrane Science, 603(15): 118005
https://doi.org/10.1016/j.memsci.2020.118005
52 H W Yen, Z H Chen, I K Yang. (2012). Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Bioresource Technology, 109: 105–109
https://doi.org/10.1016/j.biortech.2012.01.017
53 L Z Zhang, D M Xu, J Gao, L W Zhao, Z S Zhang, C L Li. (2016a). Measurements and correlations of density, viscosity, and vapour-liquid equilibrium for fluoro alcohols. Journal of Chemical Thermodynamics, 102: 155–163
https://doi.org/10.1016/j.jct.2016.07.011
54 N Zhang, Y Song, X Ruan, X Yan, Z Liu, Z Shen, X Wu, G He. (2016b). Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(35): 24198–24209
https://doi.org/10.1039/C6CP03012B
55 W Zhang, Z Xu, X Yang. (2019). Molecular simulation of penetration separation for ethanol/water mixtures using two-dimensional nanoweb graphynes. Chinese Journal of Chemical Engineering, 27(2): 286–292
https://doi.org/10.1016/j.cjche.2018.02.028
56 L Zhao, Z Wang, H Yang, D Xu, L Zhang, J Gao, Y Wang. (2020). Separation of azeotrope 2,2,3,3-tetrafluoro-1-propanol and water: liquid-liquid equilibrium measurements and interaction exploration. Journal of Chemical Thermodynamics, 142: 106011
https://doi.org/10.1016/j.jct.2019.106011
57 F Zhu, E Tajkhorshid, K Schulten. (2002). Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophysical Journal, 83(1): 154–160
https://doi.org/10.1016/S0006-3495(02)75157-6
58 F Zhu, E Tajkhorshid, K Schulten. (2004). Theory and simulation of water permeation in aquaporin-1. Biophysical Journal, 86(1): 50–57
https://doi.org/10.1016/S0006-3495(04)74082-5
[1] FSE-23041-OF-LQ_suppl_1 Download
[1] Xufang Wang, Dongli Guo, Jinna Zhang, Yuan Yao, Yanbiao Liu. Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane for enhanced micropollutants degradation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 106-.
[2] Shuang Zhang, Shuai Liang, Yifan Gao, Yang Wu, Xia Huang. Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment[J]. Front. Environ. Sci. Eng., 2023, 17(3): 30-.
[3] Min Cheng, Zhiyuan Zhang, Shihui Wang, Kexin Bi, Kong-qiu Hu, Zhongde Dai, Yiyang Dai, Chong Liu, Li Zhou, Xu Ji, Wei-qun Shi. A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(12): 148-.
[4] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[5] Xiaoyan Guo, Chunyu Li, Chenghao Li, Tingting Wei, Lin Tong, Huaiqi Shao, Qixing Zhou, Lan Wang, Yuan Liao. G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance[J]. Front. Environ. Sci. Eng., 2019, 13(6): 81-.
[6] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[7] Gang Yi, Xinfei Fan, Xie Quan, Shuo Chen, Hongtao Yu. Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(2): 23-.
[8] Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 784-792.
[9] Yu YANG,Zhicheng YU,Takayuki NOSAKA,Kyle DOUDRICK,Kiril HRISTOVSKI,Pierre HERCKES,Paul WESTERHOFF. Interaction of carbonaceous nanomaterials with wastewater biomass[J]. Front. Environ. Sci. Eng., 2015, 9(5): 823-831.
[10] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[11] Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts[J]. Front. Environ. Sci. Eng., 2015, 9(3): 436-443.
[12] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[13] Yuanting LI, Dawei LI, Wei SONG, Meng LI, Jie ZOU, Yitao LONG. Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor[J]. Front Envir Sci Eng, 2012, 6(6): 831-838.
[14] Fei YU, Jie MA, Yanqing WU. Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl[J]. Front Envir Sci Eng, 2012, 6(3): 320-329.
[15] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed