Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (9) : 106    https://doi.org/10.1007/s11783-023-1706-0
RESEARCH ARTICLE
Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane for enhanced micropollutants degradation
Xufang Wang1, Dongli Guo1, Jinna Zhang2, Yuan Yao3(), Yanbiao Liu1,4()
1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
2. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
3. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
4. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(2635 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A CNT filter enabled effective KMnO4 activation via facilitated electron transfer.

● Ultra-fast degradation of micropollutants were achieved in KMnO4/CNT system.

● CNT mediated electron transfer process from electron-rich molecules to KMnO4.

● Electron transfer dominated organic degradation.

Numerous reagents have been proposed as electron sacrificers to induce the decomposition of permanganate (KMnO4) by producing highly reactive Mn species for micropollutants degradation. However, this strategy can lead to low KMnO4 utilization efficiency due to limitations associated with poor mass transport and high energy consumption. In the present study, we rationally designed a catalytic carbon nanotube (CNT) membrane for KMnO4 activation toward enhanced degradation of micropollutants. The proposed flow-through system outperformed conventional batch reactor owing to the improved mass transfer via convection. Under optimal conditionals, a > 70% removal (equivalent to an oxidation flux of 2.43 mmol/(h·m2)) of 80 μmol/L sulfamethoxazole (SMX) solution can be achieved at single-pass mode. The experimental analysis and DFT studies verified that CNT could mediate direct electron transfer from organic molecules to KMnO4, resulting in a high utilization efficiency of KMnO4. Furthermore, the KMnO4/CNT system had outstanding reusability and CNT could maintain a long-lasting reactivity, which served as a green strategy for the remediation of micropollutants in a sustainable manner. This study provides new insights into the electron transfer mechanisms and unveils the advantages of effective KMnO4 utilization in the KMnO4/CNT system for environmental remediation.

Keywords KMnO4      Carbon nanotubes      Non-radical pathway      Electron transfer      Water treatment     
Corresponding Author(s): Yuan Yao,Yanbiao Liu   
Issue Date: 31 March 2023
 Cite this article:   
Xufang Wang,Dongli Guo,Jinna Zhang, et al. Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane for enhanced micropollutants degradation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 106.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1706-0
https://academic.hep.com.cn/fese/EN/Y2023/V17/I9/106
Fig.1  SMX oxidation flux under different KMnO4 concentrations in the (a) KMnO4 alone system and (b) CNT/KMnO4 system. Experimental conditions: [SMX]0 = 80 μmol/L, flow rate = 0.5 mL/min, and pH = 6.2.
Fig.2  (a) The effect of PMSO on SMX oxidation in the CNT/KMnO4 system, (b) UV-visible spectrum of different solution samples, (c) SMX oxidation in various systems, (d) UV-visible spectrum of different solution samples in the presence of 1.0 mmol/L pyrophosphate. Experimental conditions: [SMX]0 = 80 μmol/L, [KMnO4]0 = 1.0 mmol/L, flow rate = 0.5 mL/min, and pH = 6.2.
Fig.3  XPS spectra of CNT: (a) survey spectrum, core-level spectra of (b) Mn 2p and (c) O 1s.
Fig.4  (a) Chronoamperometry in 50 mmol/L Na2SO4 electrolyte solution at Pt electrodes and (b) proposed mechanisms of SMX oxidation in the CNT/KMnO4 system.
Fig.5  The potential difference in molecular orbitals drives electron transmission via the structural defects of CNT.
Fig.6  (a) The schematic illustration of the KMnO4/CNT system, and (b) the stability analysis for SMX oxidation flux. Experimental conditions: [SMX]0 = 80 μmol/L, [KMnO4]0 = 1.0 mmol/L, flow rate = 0.5 mL/min, and pH = 6.2.
1 I Bavasso , D Montanaro , L Di Palma , E Petrucci . (2020). Electrochemically assisted decomposition of ozone for degradation and mineralization of Diuron. Electrochimica Acta, 331: 135423
https://doi.org/10.1016/j.electacta.2019.135423
2 M E Casida , C Jamorski , K C Casida , D R Salahub . (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. Journal of Chemical Physics, 108(11): 4439–4449
https://doi.org/10.1063/1.475855
3 J Chen , R Qu , X Pan , Z Wang . (2016). Oxidative degradation of triclosan by potassium permanganate: kinetics, degradation products, reaction mechanism, and toxicity evaluation. Water Research, 103: 215–223
https://doi.org/10.1016/j.watres.2016.07.041
4 J Chen , D Rao , H Dong , B Sun , B Shao , G Cao , X Guan . (2020). The role of active manganese species and free radicals in permanganate/bisulfite process. Journal of Hazardous Materials, 388: 121735
https://doi.org/10.1016/j.jhazmat.2019.121735
5 H Cheng , J Ma , J Jiang , S Y Pang , T Yang , P Wang . (2019). Aggregation kinetics of manganese oxides formed from permanganate activated by (Bi)sulfite: dual role of Ca2+ and MnII/III. Water Research, 159: 454–463
https://doi.org/10.1016/j.watres.2019.05.033
6 E Derakhshani, A Naghizadeh (2013). Ultrasound regeneration of multi wall carbon nanotubes saturated by humic acid. Desalination and Water Treatment, 52(40–42): 7468–7472
7 J K Du , G F Xiao , Y X Xi , X W Zhu , F Su , S H Kim . (2020). Periodate activation with manganese oxides for sulfanilamide degradation. Water Research, 169: 115278
https://doi.org/10.1016/j.watres.2019.115278
8 J Gao , C Hedman , C Liu , T Guo , J A Pedersen . (2012). Transformation of sulfamethazine by manganese oxide in aqueous solution. Environmental Science & Technology, 46(5): 2642–2651
https://doi.org/10.1021/es202492h
9 Y Gao , J Jiang , Y Zhou , S Y Pang , J Ma , C Jiang , Y Yang , Z S Huang , J Gu , Q Guo , J B Duan , J Li . (2018). Chlorination of bisphenol S: kinetics, products, and effect of humic acid. Water Research, 131: 208–217
https://doi.org/10.1016/j.watres.2017.12.049
10 Y Gao , Y Zhou , S Y Pang , J Jiang , Z Yang , Y Shen , Z Wang , P X Wang , L H Wang . (2019). New insights into the combination of permanganate and bisulfite as a novel advanced oxidation process: importance of high valent manganese-oxo species and sulfate radical. Environmental Science & Technology, 53(7): 3689–3696
https://doi.org/10.1021/acs.est.8b05306
11 X H Guan , D He , J Ma , G H Chen . (2010). Application of permanganate in the oxidation of micropollutants: a mini review. Frontiers of Environmental Science & Engineering in China, 4(4): 405–413
https://doi.org/10.1007/s11783-010-0252-8
12 D L Guo , S J You , F Li , Y B Liu . (2022). Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation: a review. Chinese Chemical Letters, 33(1): 1–10
https://doi.org/10.1016/j.cclet.2021.06.027
13 C Han , X G Duan , M J Zhang , W Z Fu , X Z Duan , W J Ma , S M Liu , S B Wang , X G Zhou . (2019). Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation. Carbon, 153: 73–80
https://doi.org/10.1016/j.carbon.2019.06.107
14 X M Hao , G L Wang , S Chen , H T Yu , X Quan . (2019). Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 13(5): 77
https://doi.org/10.1007/s11783-019-1161-0
15 Y B Hu , S L Lo , Y F Li , Y C Lee , M J Chen , J C Lin . (2018). Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system. Water Research, 140: 148–157
https://doi.org/10.1016/j.watres.2018.04.044
16 J Jiang , S Y Pang , J Ma . (2010). Role of ligands in permanganate oxidation of organics. Environmental Science & Technology, 44(11): 4270–4275
https://doi.org/10.1021/es100038d
17 L Jin , S You , X Duan , Y Yao , J Yang , Y Liu . (2022). Peroxymonosulfate activation by Fe3O4-MnO2/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: performance and mechanism. Journal of Hazardous Materials, 423: 127111
https://doi.org/10.1016/j.jhazmat.2021.127111
18 J E Kostka , G W Lutheriii , K H Nealson . (1995). Chemical and biological reduction of Mn(III)-pyrophosphate complexes: potential importance of dissolved Mn(III) as an environmental oxidant. Geochimica et Cosmochimica Acta, 59: 885–894
19 H Lee , H I Kim , S Weon , W Choi , Y S Hwang , J Seo , C Lee , J H Kim . (2016). Activation of persulfates by graphitized nanodiamonds for removal of organic compounds. Environmental Science & Technology, 50(18): 10134–10142
https://doi.org/10.1021/acs.est.6b02079
20 Q Q Liu , M Li , X Liu , Q Zhang , R Liu , Z L Wang , X T Shi , J Quan , X H Shen , F W Zhang . (2018). Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism. Frontiers of Environmental Science & Engineering, 12(6): 6
https://doi.org/10.1007/s11783-018-1048-5
21 Y B Liu , G D Gao , C D Vecitis . (2020). Prospects of an electroactive carbon nanotube membrane toward environmental applications. Accounts of Chemical Research, 53(12): 2892–2902
https://doi.org/10.1021/acs.accounts.0c00544
22 Y B Liu , J H Li , B X Zhou , J Bai , Q Zheng , J L Zhang , W M Cai . (2009). Comparison of photoelectrochemical properties of TiO2-nanotube-array photoanode prepared by anodization in different electrolyte. Environmental Chemistry Letters, 7(4): 363–368
https://doi.org/10.1007/s10311-008-0180-z
23 X Y Ma , S F Hu , H Y Wang , J Li , J Huang , Y Zhang , W G Lu , Q S Li . (2012). Kinetics of oxidation of dimethyl trisulfide by potassium permanganate in drinking water. Frontiers of Environmental Science & Engineering, 6(2): 171–176
https://doi.org/10.1007/s11783-011-0319-1
24 M Mustafa , H J Wang , R H Lindberg , J Fick , Y Y Wang , M Tysklind . (2021). Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process. Frontiers of Environmental Science & Engineering, 15(5): 106
https://doi.org/10.1007/s11783-021-1394-6
25 F Pan , H Ji , P Du , T Huang , C Wang , W Liu . (2021). Insights into catalytic activation of peroxymonosulfate for carbamazepine degradation by MnO2 nanoparticles in-situ anchored titanate nanotubes: mechanism, ecotoxicity and DFT study. Journal of Hazardous Materials, 402: 123779
https://doi.org/10.1016/j.jhazmat.2020.123779
26 R G Pearson . (1986). Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences of the United States of America, 83(22): 8440–8441
https://doi.org/10.1073/pnas.83.22.8440
27 J Peng , P Zhou , H Zhou , W Liu , H Zhang , C Zhou , L Lai , Z Ao , S Su , B Lai . (2021). Insights into the electron-transfer mechanism of permanganate activation by graphite for enhanced oxidation of sulfamethoxazole. Environmental Science & Technology, 55(13): 9189–9198
https://doi.org/10.1021/acs.est.1c00020
28 K Rasool , R P Pandey , P A Rasheed , S Buczek , Y Gogotsi , K A Mahmoud . (2019). Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today, 30: 80–102
https://doi.org/10.1016/j.mattod.2019.05.017
29 W Ren , L L Xiong , G Nie , H Zhang , X G Duan , S B Wang . (2020). Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: the role of oxygen functional groups. Environmental Science & Technology, 54(2): 1267–1275
https://doi.org/10.1021/acs.est.9b06208
30 P Shao , S Yu , X Duan , L Yang , H Shi , L Ding , J Tian , L Yang , X Luo , S Wang . (2020). Potential difference driving electron transfer via defective carbon nanotubes toward selective oxidation of organic micropollutants. Environmental Science & Technology, 54(13): 8464–8472
https://doi.org/10.1021/acs.est.0c02645
31 Z C Shen , L Zhan , Z M Xu . (2022). Thermal defluorination behaviors of PFOS, PFOA and PFBS during regeneration of activated carbon by molten salt. Frontiers of Environmental Science & Engineering, 16(8): 103
https://doi.org/10.1007/s11783-022-1524-9
32 Z Shi , C Jin , R Bai , Z Gao , J Zhang , L Zhu , Z Zhao , T J Strathmann . (2020). Enhanced transformation of emerging contaminants by permanganate in the presence of redox mediators. Environmental Science & Technology, 54(3): 1909–1919
https://doi.org/10.1021/acs.est.9b05711
33 L I Simandi , M Jaky , Z A Schelly . (1984). Short-lived manganate(VI) and manganate(V) intermediates in the permanganate oxidation of sulfite ion. Journal of the American Chemical Society, 106(22): 6866–6867
https://doi.org/10.1021/ja00334a079
34 B Sun , X H Guan , J Y Fang , P G Tratnyek . (2015). Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the Involvement of Mn(III). Environmental Science & Technology, 49(20): 12414–12421
https://doi.org/10.1021/acs.est.5b03111
35 B Sun , Z Xiao , H Dong , S Ma , G Wei , T Cao , X Guan . (2019). Bisulfite triggers fast oxidation of organic pollutants by colloidal MnO2. Journal of Hazardous Materials, 363: 412–420
https://doi.org/10.1016/j.jhazmat.2018.10.002
36 B Sun , J Zhang , J S Du , J L Qiao , X H Guan . (2013). Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate. Environmental Science & Technology, 47(24): 14332–14340
https://doi.org/10.1021/es404138s
37 L Tang , Y Liu , J Wang , G Zeng , Y Deng , H Dong , H Feng , J Wang , B Peng . (2018). Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism. Applied Catalysis B: Environmental, 231: 1–10
https://doi.org/10.1016/j.apcatb.2018.02.059
38 S Q Tian , L Wang , Y L Liu , T Yang , Z S Huang , X S Wang , H Y He , J Jiang , J Ma . (2019). Enhanced permanganate oxidation of sulfamethoxazole and removal of dissolved organics with biochar: formation of highly oxidative manganese intermediate species and in situ activation of biochar. Environmental Science & Technology, 53(9): 5282–5291
https://doi.org/10.1021/acs.est.9b00180
39 X Wang , Y Wang , C Zhao , Y Zhu , Z Sun , H S Fan , X Hu , H Zheng . (2021). Ciprofloxacin removal by ultrasound-enhanced carbon nanotubes/permanganate process: in situ generation of free reactive manganese species via electron transfer. Water Research, 202: 117393
https://doi.org/10.1016/j.watres.2021.117393
40 L Wu , T Wu , Z Liu , W Tang , S Xiao , B Shao , Q Liang , Q He , Y Pan , C Zhao , Y Liu , S Tong . (2022). Carbon nanotube-based materials for persulfate activation to degrade organic contaminants: properties, mechanisms and modification insights. Journal of Hazardous Materials, 431: 128536
https://doi.org/10.1016/j.jhazmat.2022.128536
41 K Xu , W Ben , W Ling , Y Zhang , J Qu , Z Qiang . (2017). Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: kinetics and mechanism. Water Research, 123: 67–74
https://doi.org/10.1016/j.watres.2017.06.037
42 S Yang , S Wang , X Liu , L Li . (2019). Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon, 147: 540–549
https://doi.org/10.1016/j.carbon.2019.03.023
43 S Yu , Y Peng , P Shao , Y Wang , Y He , W Ren , L Yang , H Shi , X Luo . (2023). Electron-transfer-based peroxymonosulfate activation on defect-rich carbon nanotubes: understanding the substituent effect on the selective oxidation of phenols. Journal of Hazardous Materials, 442: 130108
https://doi.org/10.1016/j.jhazmat.2022.130108
44 E T Yun , J H Lee , J Kim , H D Park , J Lee . (2018). Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environmental Science & Technology, 52(12): 7032–7042
https://doi.org/10.1021/acs.est.8b00959
45 P Zhang , P Zhou , J L Peng , Y Liu , H Zhang , C S He , Z K Xiong , W Liu , B Lai . (2022). Insight into metal-free carbon catalysis in enhanced permanganate oxidation: changeover from electron donor to electron mediator. Water Research, 219: 118626
https://doi.org/10.1016/j.watres.2022.118626
46 W T Zheng , S J You , Y Yao , L M Jin , Y B Liu . (2021). Development of atomic hydrogen-mediated electrocatalytic filtration system for peroxymonosulfate activation towards ultrafast degradation of emerging organic contaminants. Applied Catalysis B: Environmental, 298: 120593
https://doi.org/10.1016/j.apcatb.2021.120593
47 Y Zhou , Y Gao , J Jiang , Y M Shen , S Y Pang , Y Song , Q Guo . (2021). A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: kinetics, products and effect of quinone group. Journal of Hazardous Materials, 403: 123834
https://doi.org/10.1016/j.jhazmat.2020.123834
48 Z Zhou , X Liu , K Sun , C Y Lin , J Ma , M C He , W Ouyang . (2019). Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review. Chemical Engineering Journal, 372: 836–851
https://doi.org/10.1016/j.cej.2019.04.213
49 S S Zhu , X C Huang , F Ma , L Wang , X G Duan , S B Wang . (2018). Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environmental Science & Technology, 52(15): 8649–8658
https://doi.org/10.1021/acs.est.8b01817
50 Y H Zhu , X X Wang , J Zhang , L Ding , J F Li , H L Zheng , C Zhao . (2019a). Generation of active Mn(III)aq by a novel heterogeneous electro-permanganate process with manganese(II) as promoter and stabilizer. Environmental Science & Technology, 53(15): 9063–9072
https://doi.org/10.1021/acs.est.9b01510
51 Y H Zhu , C Zhao , J L Liang , R Shang , X M Zhu , L Ding , H P Deng , H L Zheng , T J Strathmann . (2019b). Rapid removal of diclofenac in aqueous solution by soluble Mn(III)aq generated in a novel electro-activated carbon fiber-permanganate (E-ACF-PM) process. Water Research, 165: 114975
https://doi.org/10.1016/j.watres.2019.114975
[1] FSE-23008-OF-WXF_suppl_1 Download
[1] Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen. Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction[J]. Front. Environ. Sci. Eng., 2024, 18(2): 17-.
[2] Yiwei Liu, Kaili Gu, Jinhua Zhang, Jinxiang Li, Jieshu Qian, Jinyou Shen, Xiaohong Guan. Partial aging can counter-intuitively couple with sulfidation to improve the reactive durability of zerovalent iron[J]. Front. Environ. Sci. Eng., 2024, 18(2): 14-.
[3] Caiyan Qu, Lushan Li, Fan Feng, Kainian Jiang, Xing Wu, Muchuan Qin, Jia Tang, Xi Tang, Ruiyang Xiao, Di Wu, Chongjian Tang. Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways, and mechanism[J]. Front. Environ. Sci. Eng., 2023, 17(9): 115-.
[4] Pelin Koyuncuoğlu, Gülbin Erden. Microplastics in municipal wastewater treatment plants: a case study of Denizli/Turkey[J]. Front. Environ. Sci. Eng., 2023, 17(8): 99-.
[5] Xiaohua Fu, Qingxing Zheng, Guomin Jiang, Kallol Roy, Lei Huang, Chang Liu, Kun Li, Honglei Chen, Xinyu Song, Jianyu Chen, Zhenxing Wang. Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model[J]. Front. Environ. Sci. Eng., 2023, 17(8): 98-.
[6] Guannan Mao, Donglin Wang, Yaohui Bai, Jiuhui Qu. Mitigating microbiological risks of potential pathogens carrying antibiotic resistance genes and virulence factors in receiving rivers: Benefits of wastewater treatment plant upgrade[J]. Front. Environ. Sci. Eng., 2023, 17(7): 82-.
[7] Shengqi Zhang, Qian Yin, Siqin Wang, Xin Yu, Mingbao Feng. Integrated risk assessment framework for transformation products of emerging contaminants: what we know and what we should know[J]. Front. Environ. Sci. Eng., 2023, 17(7): 91-.
[8] Zhicheng Liao, Bei Li, Juhong Zhan, Huan He, Xiaoxia Yang, Dongxu Zhou, Guoxi Yu, Chaochao Lai, Bin Huan, Xuejun Pan. Photosensitivity sources of dissolved organic matter from wastewater treatment plants and their mediation effect on 17α-ethinylestradiol photodegradation[J]. Front. Environ. Sci. Eng., 2023, 17(6): 69-.
[9] Zhengyang Huo, Young Jun Kim, Yuying Chen, Tianyang Song, Yang Yang, Qingbin Yuan, Sang Woo Kim. Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energy[J]. Front. Environ. Sci. Eng., 2023, 17(10): 118-.
[10] Yabing Meng, Depeng Wang, Zhong Yu, Qingyun Yan, Zhili He, Fangang Meng. Genome-resolved metagenomic analysis reveals different functional potentials of multiple Candidatus Brocadia species in a full-scale swine wastewater treatment system[J]. Front. Environ. Sci. Eng., 2023, 17(1): 2-.
[11] Runyao Huang, Jin Xu, Li Xie, Hongtao Wang, Xiaohang Ni. Energy neutrality potential of wastewater treatment plants: A novel evaluation framework integrating energy efficiency and recovery[J]. Front. Environ. Sci. Eng., 2022, 16(9): 117-.
[12] Shaoping Luo, Yi Peng, Ying Liu, Yongzhen Peng. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(9): 123-.
[13] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[14] Yingbin Hu, Ning Li, Jin Jiang, Yanbin Xu, Xiaonan Luo, Jie Cao. Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic biological nitrogen removal[J]. Front. Environ. Sci. Eng., 2022, 16(7): 90-.
[15] Lei Li, Shijie Yuan, Chen Cai, Xiaohu Dai. Developing “precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electron transfer system of syntrophic partners[J]. Front. Environ. Sci. Eng., 2022, 16(6): 74-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed