Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (2) : 14    https://doi.org/10.1007/s11783-024-1774-9
RESEARCH ARTICLE
Partial aging can counter-intuitively couple with sulfidation to improve the reactive durability of zerovalent iron
Yiwei Liu1, Kaili Gu1, Jinhua Zhang1, Jinxiang Li1(), Jieshu Qian1, Jinyou Shen1, Xiaohong Guan2()
1. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
 Download: PDF(4728 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Partial aging of SZVI can enhance its reactive durability toward Cr(VI).

● Partial aging can couple with sulfidation to reconstruct the interface of ZVI.

● Partial aging can retain the conductive FeS x in the subshell of SZVI.

● Iron (hydr)oxides and FeS x improve the mass and electron transfer of ZVI to Cr(VI).

Sulfated zero-valent iron (SZVI) has shown promising applications in wastewater treatment. However, the rapid decline in the reactivity of SZVI with time limits its real practice. To mediate this problem, partial aging was proposed to improve the reactive durability of SZVI. Taking Cr(VI) as the target contaminant, we found that the aged ZVI (AZVI) gradually lost reactivity as aging time increased from 0.5 to 2 d. Counter-intuitively, the partially aged SZVI (ASZVI) showed greater reactivity than SZVI when exposed to oxygenated water for a period ranging from 0.5 to 14 d. In addition, the ASZVI with 0.5 d of aging time (ASZVI-0.5) not only maintained reactivity in successive runs but also increased the Cr(VI) removal capacity from 9.1 mg/g by SZVI to 19.1 mg/g by ASZVI-0.5. Correlation analysis further revealed that the electron transfer from the Fe0 core to the shell was mediated by the conductive FeS and FeS2 in the subshell of ASZVI. Meanwhile, the lepidocrocite and magnetite on the surface of ASZVI facilitated Cr(VI) adsorption and subsequent electron transfer for Cr(VI) reduction. Moreover, the iron (hydr)oxide shell could retain the conductive FeS and FeS2 in the subshell, allowing ASZVI to reduce Cr(VI) efficiently and sustainably. In general, partial aging can enhance the reactive durability of ZVI when coupled with sulfidation and this synergistic effect will be beneficial to the application of SZVI-based technology for wastewater treatment.

Keywords Zerovalent iron      Sulfidation      Partial aging      Interface reconstruction      Electron transfer     
Corresponding Author(s): Jinxiang Li,Xiaohong Guan   
Issue Date: 06 September 2023
 Cite this article:   
Yiwei Liu,Kaili Gu,Jinhua Zhang, et al. Partial aging can counter-intuitively couple with sulfidation to improve the reactive durability of zerovalent iron[J]. Front. Environ. Sci. Eng., 2024, 18(2): 14.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1774-9
https://academic.hep.com.cn/fese/EN/Y2024/V18/I2/14
Fig.1  Effect of aging time on the Raman spectra of the ASZVI samples (a) and the relative contents of Fe species (b–d) and S species (e–g) in the subshell of ASZVI samples from 0 to 20 nm.
Fig.2  Influence of aging time on the obvious rate constants (kobs) for Cr(VI) removal by ZVI-based samples (a) and their content of Cr(III) after reaction at 120 min (b). Reaction conditions: [ZVI]0 = 0.5 g/L, [Cr(VI)]0 = 4.0 mg/L, pHini = 5.0, [Na2SO4] = 1.0 mmol/L, t = 25 °C. Relationship of the specific rate constants (lgkSA) for Cr(VI) removal by ASZVI samples with their corrosion current density (c, lgicorr).
Fig.3  Kinetics of Cr(VI) removal in consecutive runs by PZVI/AZVI (a), SZVI (b), and ASZVI-0.5 (c), along with their reaction rates (d), removal capacity (e, left ordinate) and percent of Cr(III) (e, right ordinate) after reaction at 540 min. Reaction conditions: [ZVI]0 = 2.0 g/L, [Cr(VI)]respike = 2.0 mg/L, pHini = 5.0, [NaCl] = 1.0 mmol/L, t = 25 °C.
Fig.4  Correlations of the specific rate constants (lg kSA) for Cr(VI) removal by ASZVI samples with their mass contents of Fe3+ on the shell (a) and Fe0 in the subshell at 20 nm (b).
Fig.5  Correlations of the specific rate constants (lg kSA) for Cr(VI) removal by ASZVI samples with their mass contents of S2– (a, d), S2– (b, e), S2– and S2– (c, f) in the subshell at 5 nm (a–c) and 20 nm (d–f).
Fig.6  Diagram of the reaction mechanism of Cr(VI) sequestration by ASZVI.
1 A Agrawal , P Tratnyek . (1995). Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology, 30(1): 153–160
https://doi.org/10.1021/es950211h
2 S Cai , B Chen , X Qiu , J Li , P G Tratnyek , F He . (2021). Sulfidation of zero-valent iron by direct reaction with elemental sulfur in water: efficiencies, mechanism, and dechlorination of trichloroethylene. Environmental Science & Technology, 55(1): 645–654
https://doi.org/10.1021/acs.est.0c05397
3 Z Cao , H Li , G V Lowry , X Shi , X Pan , X Xu , G Henkelman , J Xu . (2021a). Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions. Environmental Science & Technology, 55(4): 2628–2638
https://doi.org/10.1021/acs.est.0c07319
4 Z Cao , H Li , X Xu , J Xu . (2020a). Correlating surface chemistry and hydrophobicity of sulfidized nanoscale zerovalent iron with its reactivity and selectivity for denitration and dechlorination. Chemical Engineering Journal, 394: 124876
https://doi.org/10.1016/j.cej.2020.124876
5 Z Cao , H Li , S Zhang , Y Hu , J Xu , X Xu . (2021b). Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environmental Science. Nano, 8(9): 2607–2617
https://doi.org/10.1039/D1EN00364J
6 Z Cao , J Xu , H Li , T Ma , L Lou , G Henkelman , X Xu . (2020b). Dechlorination and defluorination capability of sulfidized nanoscale zerovalent iron with suppressed water reactivity. Chemical Engineering Journal, 400: 125900
https://doi.org/10.1016/j.cej.2020.125900
7 D Fan , Y Lan , P G Tratnyek , R L Johnson , J Filip , D M O’Carroll , Garcia A Nunez , A Agrawal . (2017). Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation. Environmental Science & Technology, 51(22): 13070–13085
https://doi.org/10.1021/acs.est.7b04177
8 P Fan , L Li , Y Sun , J Qiao , C Xu , X Guan . (2019a). Selenate removal by Fe0 coupled with ferrous iron, hydrogen peroxide, sulfidation, and weak magnetic field: a comparative study. Water Research, 159: 375–384
https://doi.org/10.1016/j.watres.2019.05.037
9 P Fan , Y Sun , B Zhou , X Guan . (2019b). Coupled effect of sulfidation and ferrous dosing on selenate removal by zerovalent iron under aerobic conditions. Environmental Science & Technology, 53(24): 14577–14585
https://doi.org/10.1021/acs.est.9b04956
10 P Fan , X Zhang , H Deng , X Guan . (2021). Enhanced reduction of p-nitrophenol by zerovalent iron modified with carbon quantum dots. Applied Catalysis B: Environmental, 285: 119829
https://doi.org/10.1016/j.apcatb.2020.119829
11 P Feng , X Guan , Y Sun , W Choi , H Qin , J Wang , J Qiao , L Li . (2015). Weak magnetic field accelerates chromate removal by zero-valent iron. Journal of Environmental Sciences (China), 31: 175–183
https://doi.org/10.1016/j.jes.2014.10.017
12 F Fu , D D Dionysiou , H Liu . (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267: 194–205
https://doi.org/10.1016/j.jhazmat.2013.12.062
13 A N Garcia , Y Zhang , S Ghoshal , F He , D M O’Carroll . (2021). Recent advances in sulfidated zerovalent iron for contaminant transformation. Environmental Science & Technology, 55(13): 8464–8483
https://doi.org/10.1021/acs.est.1c01251
14 C L Geiger , N E Ruiz , C A Clausen , D R Reinhart , J W Quinn . (2002). Ultrasound pretreatment of elemental iron: kinetic studies of dehalogenation reaction enhancement and surface effects. Water Research, 36(5): 1342–1350
https://doi.org/10.1016/S0043-1354(01)00319-0
15 M Gheju (2011). Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water, Air, and Soil Pollution, 222(1–4): 103–148
https://doi.org/10.1007/s11270-011-0812-y
16 R W Gillham , S F Ohannesin . (1994). Enhanced degradation of falogenated aliphatics by zero-valent iron. Ground Water, 32(6): 958–967
https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
17 Y Gong , L Gai , J Tang , J Fu , Q Wang , E Y Zeng . (2017). Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 595: 743–751
https://doi.org/10.1016/j.scitotenv.2017.03.282
18 Y Gu , L Gong , J Qi , S Cai , W Tu , F He . (2019). Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: experimental evidences and mechanism. Water Research, 159: 233–241
https://doi.org/10.1016/j.watres.2019.04.061
19 Y Gu , B Wang , F He , M J Bradley , P G Tratnyek . (2017). Mechanochemically sulfidated microscale zero valent iron: pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination. Environmental Science & Technology, 51(21): 12653–12662
https://doi.org/10.1021/acs.est.7b03604
20 X H Guan , Y K Sun , H J Qin , J X Li , I M Lo , D He , H R Dong . (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Research, 75: 224–248
https://doi.org/10.1016/j.watres.2015.02.034
21 S Huang , C Xu , Q Shao , Y Wang , B Zhang , B Gao , W Zhou , P G Tratnyek . (2018). Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms. Chemical Engineering Journal, 338: 539–547
https://doi.org/10.1016/j.cej.2018.01.033
22 X Huang , L Chen , Z Ma , K C Carroll , X Zhao , Z Huo . (2022). Cadmium removal mechanistic comparison of three Fe-based nanomaterials: water-chemistry and roles of Fe dissolution. Frontiers of Environmental Science & Engineering, 16(12): 151
23 E J Kim , J H Kim , A M Azad , Y S Chang . (2011). Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications. ACS Applied Materials & Interfaces, 3(5): 1457–1462
https://doi.org/10.1021/am200016v
24 H Li , J Zhang , K Gu , J Li . (2020a). Sulfidation of zerovalent iron for improving the selectivity toward Cr(VI) in oxic water: involvements of FeSx. Journal of Hazardous Materials, 409: 124498
https://doi.org/10.1016/j.jhazmat.2020.124498
25 J Li , X Dou , H Qin , Y Sun , D Yin , X Guan . (2019). Characterization methods of zerovalent iron for water treatment and remediation. Water Research, 148: 70–85
https://doi.org/10.1016/j.watres.2018.10.025
26 J Li , H Qin , X Guan . (2015). Premagnetization for enhancing the reactivity of multiple zerovalent iron samples toward various contaminants. Environmental Science & Technology, 49(24): 14401–14408
https://doi.org/10.1021/acs.est.5b04215
27 J Li , X Zhang , M Liu , B C Pan , W Zhang , Z Shi , X Guan . (2018). Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions. Environmental Science & Technology, 52(5): 2988–2997
https://doi.org/10.1021/acs.est.7b06502
28 J Li , X Zhang , Y Sun , L Liang , B C Pan , W Zhang , X Guan . (2017). Advances in sulfidation of zerovalent iron for water decontamination. Environmental Science & Technology, 248(23): 173–182
https://doi.org/10.1021/acs.est.7b02695
29 M Li , Y Mu , H Shang , C Mao , S Cao , Z Ai , L Zhang . (2020b). Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal. Applied Catalysis B: Environmental, 263: 118364
https://doi.org/10.1016/j.apcatb.2019.118364
30 L Liang , W Sun , X Guan , Y Huang , W Choi , H Bao , L Li , Z Jiang . (2014a). Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Research, 49: 371–380
https://doi.org/10.1016/j.watres.2013.10.026
31 L P Liang , X H Guan , Z Shi , J L Li , Y N Wu , P G Tratnyek . (2014b). Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron. Environmental Science & Technology, 48(11): 6326–6334
https://doi.org/10.1021/es500958b
32 J Ling , J Qiao , Y Song , Y Sun . (2019). Influence of coexisting ions on the electron efficiency of sulfidated zerovalent iron toward Se(VI) removal. Chemical Engineering Journal, 378: 122124
https://doi.org/10.1016/j.cej.2019.122124
33 Y H Liou , S L Lo , C J Lin , W H Kuan , S C Weng . (2005). Effects of iron surface pretreatment on kinetics of aqueous nitrate reduction. Journal of Hazardous Materials, 126(1): 189–194
https://doi.org/10.1016/j.jhazmat.2005.06.038
34 Y Liu , J Qiao , Y Sun , X Guan . (2022). Simultaneous sequestration of humic acid-complexed Pb(II), Zn(II), Cd(II), and As(V) by sulfidated zero-valent iron: performance and stability of sequestration products. Environmental Science & Technology, 56(5): 3127–3137
https://doi.org/10.1021/acs.est.1c07731
35 Y Lü , J Li , Y Li , L Liang , H Dong , K Chen , C Yao , Z Li , J Li , X Guan . (2019). The roles of pyrite for enhancing reductive removal of nitrobenzene by zero-valent iron. Applied Catalysis B: Environmental, 242: 9–18
https://doi.org/10.1016/j.apcatb.2018.09.086
36 M Mangayayam , K Dideriksen , M Ceccato , D J Tobler . (2019). The structure of sulfidized zero-valent iron by one-pot synthesis: impact on contaminant selectivity and long-term performance. Environmental Science & Technology, 53(8): 4389–4396
https://doi.org/10.1021/acs.est.8b06480
37 L J Matheson , P G Tratnyek . (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28(12): 2045–2053
https://doi.org/10.1021/es00061a012
38 R Miehr , P G Tratnyek , J Z Bandstra , M M Scherer , M J Alowitz , E J Bylaska . (2004). Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environmental Science & Technology, 38(1): 139–147
https://doi.org/10.1021/es034237h
39 C Noubactep . (2008). A critical review on the process of contaminant removal in Fe0-H2O systems. Environmental Technology, 29(8): 909–920
https://doi.org/10.1080/09593330802131602
40 J Qiao , Y Liu , H Yang , X Guan , Y Sun . (2021). Remediation of arsenic contaminated soil by sulfidated zero-valent iron. Frontiers of Environmental Science & Engineering, 15(5): 83
41 H Qin , X Guan , J Z Bandstra , R L Johnson , P G Tratnyek . (2018). Modeling the kinetics of hydrogen formation by zerovalent iron: effects of sulfidation on micro- and nano-scale particles. Environmental Science & Technology, 52(23): 13887–13896
https://doi.org/10.1021/acs.est.8b04436
42 H J Qin , J X Li , H Y Yang , B C Pan , W M Zhang , X H Guan . (2017). Coupled effect of ferrous ion and oxygen on the electron selectivity of zerovalent iron for selenate sequestration. Environmental Science & Technology, 51(9): 5090–5097
https://doi.org/10.1021/acs.est.6b04832
43 S R Rajajayavel , S Ghoshal . (2015). Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Research, 78: 144–153
https://doi.org/10.1016/j.watres.2015.04.009
44 Q Shao , C Xu , Y Wang , S Huang , B Zhang , L Huang , D Fan , P G Tratnyek . (2018). Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal. Water Research, 135: 322–330
https://doi.org/10.1016/j.watres.2018.02.030
45 J Shi , J Zhang , C Wang , Y Liu , J Li . (2023). Research progress on the magnetite nanoparticles in the fields of water pollution control and detection. Chemosphere, 336: 139220
https://doi.org/10.1016/j.chemosphere.2023.139220
46 S Song , Y Su , A S Adeleye , Y Zhang , X Zhou . (2017). Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal. Applied Catalysis B: Environmental, 201: 211–220
https://doi.org/10.1016/j.apcatb.2016.07.055
47 L L Stookey . (1970). Ferrozine—a new spectrophotometric reagent for iron. Analytical Chemistry, 42(7): 779–781
https://doi.org/10.1021/ac60289a016
48 Y K Sun , X H Guan , J M Wang , X G Meng , C H Xu , G M Zhou . (2014). Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation. Environmental Science & Technology, 48(12): 6850–6858
https://doi.org/10.1021/es5003956
49 S Ullah , X Guo , X Luo , X Zhang , Y Li , Z Zhang . (2020). The coupling of sand with ZVI/oxidants achieved proportional and highly efficient removal of arsenic. Frontiers of Environmental Science & Engineering, 14(6): 94
50 C Xu , B Zhang , Y Wang , Q Shao , W Zhou , D Fan , J Z Bandstra , Z Shi , P G Tratnyek . (2016a). Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron. Environmental Science & Technology, 50(21): 11879–11887
https://doi.org/10.1021/acs.est.6b03184
51 H Xu , Y Sun , J Li , F Li , X Guan . (2016b). Aging of zerovalent iron in synthetic groundwater: X-ray photoelectron spectroscopy depth profiling characterization and depassivation with uniform magnetic field. Environmental Science & Technology, 50(15): 8214–8222
https://doi.org/10.1021/acs.est.6b01763
52 J Xu , A Avellan , H Li , E A Clark , G Henkelman , R Kaegi , G V Lowry . (2020a). Iron and sulfur precursors affect crystalline structure, speciation, and reactivity of sulfidized nanoscale zerovalent iron. Environmental Science & Technology, 54(20): 13294–13303
https://doi.org/10.1021/acs.est.0c03879
53 J Xu , A Avellan , H Li , X Liu , V Noël , Z Lou , Y Wang , R Kaegi , G Henkelman , G V Lowry . (2020b). Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Advanced Materials, 32(17): 1906910
https://doi.org/10.1002/adma.201906910
54 J Xu , Z Cao , H Zhou , Z Lou , Y Wang , X Xu , G V Lowry . (2019a). Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron. Environmental Science & Technology, 53(22): 13344–13352
https://doi.org/10.1021/acs.est.9b04210
55 J Xu , H Li , G V Lowry . (2021). Sulfidized nanoscale zero-valent iron: tuning the properties of this complex material for efficient groundwater remediation. Accounts of Materials Research, 2(6): 420–431
https://doi.org/10.1021/accountsmr.1c00037
56 J Xu , Y Wang , C Weng , W Bai , Y Jiao , R Kaegi , G V Lowry . (2019b). Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environmental Science & Technology, 53(10): 5936–5945
https://doi.org/10.1021/acs.est.9b00511
57 W Xu , Z Li , S Shi , J Qi , S Cai , Y Yu , D M O’Carroll , F He . (2020c). Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: characterization and trichloroethene dechlorination. Applied Catalysis B: Environmental, 262: 118303
https://doi.org/10.1016/j.apcatb.2019.118303
58 W Yao , J Zhang , K Gu , J Li , J Qian . (2022). Synthesis, characterization and performances of green rusts for water decontamination: a review. Environmental Pollution, 304: 119205
https://doi.org/10.1016/j.envpol.2022.119205
59 I H Yoon , K W Kim , S Bang , M G Kim . (2011). Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion. Applied Catalysis B: Environmental, 104(1): 185–192
https://doi.org/10.1016/j.apcatb.2011.02.014
60 X Zhang , J Li , Y Sun , L Li , B Pan , W Zhang , X Guan . (2018). Aging of zerovalent iron in various coexisting solutes: characteristics, reactivity toward selenite and rejuvenation by weak magnetic field. Separation and Purification Technology, 191: 94–100
https://doi.org/10.1016/j.seppur.2017.09.020
61 J Zhao , A Su , P Tian , X Tang , R N Collins , F He . (2021). Arsenic (III) removal by mechanochemically sulfidated microscale zero valent iron under anoxic and oxic conditions. Water Research, 198: 117132
https://doi.org/10.1016/j.watres.2021.117132
62 J M Zhao , Z Wei , Y Zuo , X H Zhao . (2005). Effects of some ions on ion-selectivity of ferrous sulfide film. Journal of Applied Electrochemistry, 35(3): 267–271
https://doi.org/10.1007/s10800-004-6704-8
63 H Zou , E Hu , S Yang , L Gong , F He . (2019). Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant. Science of the Total Environment, 650: 419–426
https://doi.org/10.1016/j.scitotenv.2018.09.003
[1] FSE-23071-OF-LYW_suppl_1 Download
[1] Yongdong Chen, Hong Wang, Parisa Ghofrani-Isfahani, Li Gu, Xiaoguang Liu, Xiaohu Dai. Electronic regulation to achieve efficient anaerobic digestion of organic fraction of municipal solid waste (OFMSW): strategies, challenges and potential solutions[J]. Front. Environ. Sci. Eng., 2024, 18(4): 52-.
[2] Mathias Fessler, Qingxian Su, Marlene Mark Jensen, Yifeng Zhang. Electroactivity of the magnetotactic bacteria Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1[J]. Front. Environ. Sci. Eng., 2024, 18(4): 48-.
[3] Caiyan Qu, Lushan Li, Fan Feng, Kainian Jiang, Xing Wu, Muchuan Qin, Jia Tang, Xi Tang, Ruiyang Xiao, Di Wu, Chongjian Tang. Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways, and mechanism[J]. Front. Environ. Sci. Eng., 2023, 17(9): 115-.
[4] Xufang Wang, Dongli Guo, Jinna Zhang, Yuan Yao, Yanbiao Liu. Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane for enhanced micropollutants degradation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 106-.
[5] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[6] Yingbin Hu, Ning Li, Jin Jiang, Yanbin Xu, Xiaonan Luo, Jie Cao. Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic biological nitrogen removal[J]. Front. Environ. Sci. Eng., 2022, 16(7): 90-.
[7] Lei Li, Shijie Yuan, Chen Cai, Xiaohu Dai. Developing “precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electron transfer system of syntrophic partners[J]. Front. Environ. Sci. Eng., 2022, 16(6): 74-.
[8] Yuqing Yan, Xin Wang. Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation[J]. Front. Environ. Sci. Eng., 2022, 16(4): 52-.
[9] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[10] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[11] Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu. Dual-reaction-center catalytic process continues Fenton’s story[J]. Front. Environ. Sci. Eng., 2020, 14(5): 82-.
[12] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
[13] Feng ZHANG,Shengsong YU,Jie LI,Wenwei LI,Hanqing YU. Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers[J]. Front. Environ. Sci. Eng., 2016, 10(3): 531-538.
[14] Rongbing FU,Na MU,Xiaopin GUO,Zhen XU,Dongsu BI. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron[J]. Front. Environ. Sci. Eng., 2015, 9(5): 867-878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed