Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (4) : 52    https://doi.org/10.1007/s11783-024-1812-7
Electronic regulation to achieve efficient anaerobic digestion of organic fraction of municipal solid waste (OFMSW): strategies, challenges and potential solutions
Yongdong Chen1,2,3, Hong Wang1,2, Parisa Ghofrani-Isfahani3, Li Gu4, Xiaoguang Liu1,2(), Xiaohu Dai1,2()
1. State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
3. Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
4. College of Environment and Ecology, Chongqing University, Chongqing 400045, China
 Download: PDF(1940 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● “Electrons surplus” is the underlying cause of the anaerobic digestion collapse.

● Electronic regulation is proposed to improve the efficiency of anaerobic digestion.

● Electrons shunt enhances syntrophic oxidation of volatile fatty acids.

● Direct interspecies electron transfer improves electron transfer efficiency.

● Methanogenic metabolism pathway regulation alters electron utilization patterns.

Anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW) is prone to system breakdown under high organic loading rates (OLRs) condition, which subsequently reduces the efficiency of digestion process and results in substantial economic losses. In this perspective paper, the substances metabolisms, electrons flow, as well as microbial interaction mechanisms within AD process are comprehensively discussed, and the underlying bottleneck that causes inefficient methane production is identified, which is “electrons surplus”. Systems encountering severe electron surplus are at risk of process failure, making it crucial to proactively prevent this phenomenon through appropriate approaches. On this basis, the present perspective proposes three potential electronic regulation strategies to prevent electrons surplus, namely, electron shunt, accelerating electron transfer and regulating methanogenic metabolism pathway, and presents specific methodologies for each strategy. Furthermore, the potential solutions to challenges that may occur during the electronic regulation process are also presented in this paper. This perspective aims to provide innovative approaches to achieve the efficient and stable operation of OFMSW anaerobic digestion, especially under high OLRs condition.

Keywords Anaerobic digestion      Electrons surplus      Electronic regulation      Electrons shunt      Electron transfer      Methanogenic metabolism pathway     
Corresponding Author(s): Xiaoguang Liu,Xiaohu Dai   
Issue Date: 05 January 2024
 Cite this article:   
Yongdong Chen,Hong Wang,Parisa Ghofrani-Isfahani, et al. Electronic regulation to achieve efficient anaerobic digestion of organic fraction of municipal solid waste (OFMSW): strategies, challenges and potential solutions[J]. Front. Environ. Sci. Eng., 2024, 18(4): 52.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1812-7
https://academic.hep.com.cn/fese/EN/Y2024/V18/I4/52
Fig.1  The four-stage theoretical model proposed by Zeikus (1979) and the electrons flow during the AD process.
Substance Molecular formula (–) Molecular weight (g/mol) Electron number* (mol/mol) Electron density** (mol/g)
Substrate Carbohydrate (C6H10O5)n 162n 24n 0.148
Protein C5H7NO2 113 26 0.230
Lipid C57H110O6 890 326 0.366
Long-chain alkane CnH2n + 2 (n > 16) 14n + 2 6n + 2 ~0.430
Intermediates Hydrogen H2 2 2 1.000
Ethanol CH3CH2OH 46 12 0.261
Valeric acid CH3(CH2)3COOH 102 26 0.255
Butyric acid CH3(CH2)2COOH 88 20 0.227
Propionic acid CH3CH2COOH 74 14 0.189
Acetic acid CH3COOH 60 8 0.133
End products Methane CH4 16 8 0.500
Carbon dioxide CO2 44 0 0.000
Tab.1  Electron number and densities of substrates, intermediates, and end products during the AD process
Fig.2  Strategies to enhance AD efficiency of OFMSW.
1 Y Chen, L Li, H Liu, D Yang, W Liu, D Yang, X Dai, Y Chen. (2023a). Regulating effects of Fe/C materials on thermophilic anaerobic digestion of kitchen waste: digestive performances and methanogenic metabolism pathways. Fuel, 332: 126140
https://doi.org/10.1016/j.fuel.2022.126140
2 Y Chen, D Yang, R Liu, L Li, H Liu, X Dai, Y Chen. (2023b). Thermophilic anaerobic digestion of kitchen waste driven by microbial electrolysis cell (MEC): digestion performances, anodic microorganisms’ distribution and current utilization efficiency. Energy Conversion and Management, 279: 116747
https://doi.org/10.1016/j.enconman.2023.116747
3 C Dennehy, P G Lawlor, Y Jiang, G E Gardiner, S Xie, L D Nghiem, X Zhan. (2017). Greenhouse gas emissions from different pig manure management techniques: a critical analysis. Frontiers of Environmental Science & Engineering, 11(3): 11
https://doi.org/10.1007/s11783-017-0942-6
4 N Duc, Z Wu, S Shrestha, P H Lee, L Raskin, S K Khanal. (2019). Intermittent micro-aeration: new strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion. Water Research, 166: 115080
https://doi.org/10.1016/j.watres.2019.115080
5 D Feng, X Guo, R Lin, A Xia, Y Huang, Q Liao, X Zhu, X Zhu, J D Murphy (2021). How can ethanol enhance direct interspecies electron transfer in anaerobic digestion? Biotechnology Advances, 52: 107812 10.1016/j.biotechadv.2021.107812
6 S Fu, S Lian, I Angelidaki, R Guo. (2023). Micro-aeration: an attractive strategy to facilitate anaerobic digestion. Trends in Biotechnology, 41(5): 714–726
https://doi.org/10.1016/j.tibtech.2022.09.008
7 Q Guo, Z Yang, B Zhang, M Hua, C Liu, B Pan. (2022). Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi. Frontiers of Environmental Science & Engineering, 16(6): 71
8 L Li, Y Xu, X Dai, L Dai. (2021). Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer. Renewable & Sustainable Energy Reviews, 148: 111367
https://doi.org/10.1016/j.rser.2021.111367
9 L Li, S J Yuan, C Cai, X H Dai. (2022a). Developing “precise-acting” strategies for improving anaerobic methanogenesis of organic waste: insights from the electron transfer system of syntrophic partners. Frontiers of Environmental Science & Engineering, 16(6): 74
https://doi.org/10.1007/s11783-021-1508-1
10 W Li, Y Liu, B Wu, L Gu, R Deng. (2022b). Upgrade the high-load anaerobic digestion and relieve acid stress through the strategy of side-stream micro-aeration: biochemical performances, microbial response and intrinsic mechanisms. Water Research, 221: 118850
https://doi.org/10.1016/j.watres.2022.118850
11 X Li, Y Ren, X Chen, Y Li, M Chertow. (2023). Exploring the development of municipal solid waste disposal facilities in Chinese cities: patterns and drivers. Frontiers of Environmental Science & Engineering, 17(11): 139
12 D Nguyen, S K Khanal. (2018). A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process?. Biotechnology Advances, 36(7): 1971–1983
https://doi.org/10.1016/j.biotechadv.2018.08.007
13 X Pan, L Zhao, C Li, I Angelidaki, N Lv, J Ning, G Cai, G Zhu. (2021). Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis. Water Research, 190: 116774
https://doi.org/10.1016/j.watres.2020.116774
14 I Rocamora, S T Wagland, F Hassard, R Villa, M Peces, E W Simpson, O Fernández, Y Bajón-Fernández. (2023). Inhibitory mechanisms on dry anaerobic digestion: ammonia, hydrogen and propionic acid relationship. Waste Management, 161: 29–42
https://doi.org/10.1016/j.wasman.2023.02.009
15 T Storck, B Virdis, D J Batstone. (2016). Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME Journal, 10(3): 621–631
https://doi.org/10.1038/ismej.2015.139
16 Y Yan, J Zhang, L Tian, X Yan, L Du, A Leininger, M Zhang, N Li, Z J Ren, X Wang. (2023). DIET-like mutualism of Geobacter and methanogens at specific electrode potential boosts production of both methane and hydrogen from propionate. Water Research, 235: 119911
https://doi.org/10.1016/j.watres.2023.119911
17 Z Yu, K Xiao, Y Zhu, M Sun, S Liang, J Hu, H Hou, B Liu, J Yang. (2022). Comparison of different valent iron on anaerobic sludge digestion: focusing on oxidation reduction potential, dissolved organic nitrogen and microbial community. Frontiers of Environmental Science & Engineering, 16(6): 80
18 M F M A Zamri, S Hasmady, A Akhiar, F Ideris, A H Shamsuddin, M Mofijur, I M R Fattah, T M I Mahlia. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable & Sustainable Energy Reviews, 137: 110637
https://doi.org/10.1016/j.rser.2020.110637
19 J G (1979) Zeikus. Microbial populations in digesters. In: Stafford D A, Wheatley B I, Hughes D E, eds. Anaerobic Digestion. London: Applied Science Publishers Ltd., 61–87
20 Y Zhang, C Li, Z Yuan, R Wang, I Angelidaki, G Zhu. (2023). Syntrophy mechanism, microbial population, and process optimization for volatile fatty acids metabolism in anaerobic digestion. Chemical Engineering Journal, 452: 139137
https://doi.org/10.1016/j.cej.2022.139137
21 Z Zhou, C J Zhang, P F Liu, L Fu, R Laso-Perez, L Yang, L P Bai, J Li, M Yang, J Z Lin. et al.. (2022). Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature, 601(7892): 257–262
https://doi.org/10.1038/s41586-021-04235-2
[1] Mathias Fessler, Qingxian Su, Marlene Mark Jensen, Yifeng Zhang. Electroactivity of the magnetotactic bacteria Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1[J]. Front. Environ. Sci. Eng., 2024, 18(4): 48-.
[2] Yao Wang, Alejandro Ruiz-Acevedo, Eemaan Rameez, Vijaya Raghavan, Abid Hussain, Xunchang Fei. Toward sustainable waste management in small islands developing states: integrated waste-to-energy solutions in Maldives context[J]. Front. Environ. Sci. Eng., 2024, 18(2): 24-.
[3] Yiwei Liu, Kaili Gu, Jinhua Zhang, Jinxiang Li, Jieshu Qian, Jinyou Shen, Xiaohong Guan. Partial aging can counter-intuitively couple with sulfidation to improve the reactive durability of zerovalent iron[J]. Front. Environ. Sci. Eng., 2024, 18(2): 14-.
[4] Caiyan Qu, Lushan Li, Fan Feng, Kainian Jiang, Xing Wu, Muchuan Qin, Jia Tang, Xi Tang, Ruiyang Xiao, Di Wu, Chongjian Tang. Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways, and mechanism[J]. Front. Environ. Sci. Eng., 2023, 17(9): 115-.
[5] Xufang Wang, Dongli Guo, Jinna Zhang, Yuan Yao, Yanbiao Liu. Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane for enhanced micropollutants degradation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 106-.
[6] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[7] Yingbin Hu, Ning Li, Jin Jiang, Yanbin Xu, Xiaonan Luo, Jie Cao. Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic biological nitrogen removal[J]. Front. Environ. Sci. Eng., 2022, 16(7): 90-.
[8] Qiong Guo, Zhichao Yang, Bingliang Zhang, Ming Hua, Changhong Liu, Bingcai Pan. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Front. Environ. Sci. Eng., 2022, 16(6): 71-.
[9] Lei Li, Shijie Yuan, Chen Cai, Xiaohu Dai. Developing “precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electron transfer system of syntrophic partners[J]. Front. Environ. Sci. Eng., 2022, 16(6): 74-.
[10] Yuqing Yan, Xin Wang. Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation[J]. Front. Environ. Sci. Eng., 2022, 16(4): 52-.
[11] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[12] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[13] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[14] Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu. Dual-reaction-center catalytic process continues Fenton’s story[J]. Front. Environ. Sci. Eng., 2020, 14(5): 82-.
[15] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed