Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (6) : 69    https://doi.org/10.1007/s11783-024-1829-y
Intensifying electrified flow-through water treatment technologies via local environment modification
Zheng-Yang Huo1, Xiaoxiong Wang2,3, Xia Huang4, Menachem Elimelech5()
1. School of Environment and Natural Resources, Institute of Ecological Civilization, Renmin University of China, Beijing 100872, China
2. Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
3. Center of Double Helix, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
4. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
5. Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
 Download: PDF(5197 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Modifying local environment can intensify the performance of flow-through electrodes.

● Reaction rate and selectivity can be improved by local environment modification.

● Modifications include spatial confinement, enhanced local field, and periodic vortex.

● Near-complete removal of low-concentration emerging contaminants can be realized.

● Electrified flow-through systems are promising for fit-for-purpose water treatment.

Removing high-risk and persistent contaminants from water is challenging, because they typically exist at low concentrations in complex water matrices. Electrified flow-through technologies are viable to overcome the limitations induced by mass transport for efficient contaminant removal. Modifying the local environment of the flow-through electrodes offers opportunities to further improve the reaction kinetics and selectivity for achieving near-complete removal of these contaminants from water. Here, we present state-of-the-art local environment modification approaches that can be incorporated into electrified flow-through technologies to intensify water treatment. We first show methods of nanospace incorporation, local geometry adjustment, and microporous structure optimization that can induce spatial confinement, enhanced local electric field, and microperiodic vortex, respectively, for local environment modification. We then discuss why local environment modification can complement the flow-through electrodes for improving the reaction rate and selectivity. Finally, we outline appropriate scenarios of intensifying electrified flow-through technologies through local environment modification for fit-for-purpose water treatment applications.

Keywords Point-of-use water treatment      Electrified membrane      Advection-enhanced mass transport      Water decontamination and disinfection      Emerging contaminants     
Corresponding Author(s): Menachem Elimelech   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 18 April 2024
 Cite this article:   
Zheng-Yang Huo,Xiaoxiong Wang,Xia Huang, et al. Intensifying electrified flow-through water treatment technologies via local environment modification[J]. Front. Environ. Sci. Eng., 2024, 18(6): 69.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1829-y
https://academic.hep.com.cn/fese/EN/Y2024/V18/I6/69
Fig.1  Schematics of local environment modification for intensifying electrified flow-through water treatment. (a) Electrified flow-through technologies for removing high-risk and persistent contaminants from water. (b) Methods for local environment modification, including nanospace incorporation, local geometry adjustment, and microporous structure optimization. (c) Intensifying electrified flow-through water treatment by local environment modification, including incorporating advective mass transport, sufficient surface area, and pressure-promoted confinement. (d) Application scenarios of electrified flow-through water treatment, including potable water treatment at drinking water treatment plants (DWTP), wastewater reclamation at wastewater treatment plants (WWTP), and point-of-use (POU) applications powered by renewable energy.
Flow-through electrode Contaminant Mechanism Performance(concentration; efficiency; Residence time) Energy consumption per order (kWh/m) Ref.
TiO2-doped porous Ti electrode 4-Chlorophenol Nanoconfinement-enabled reaction pathway control 13 mg/L;94%;14 s 100 Kang et al. (2023)
Pd/Pt-coated ceramic membrane Sulfamethoxazole Enhanced adsorption of intermediates 2.5 mg/L;83%;23 s 10−2 Zhao et al. (2020)
SnO2-Sb-doped Ti foam Sulfamethoxazole, norfloxacin, and ibuprofen Sufficient exposure on active sites 2−5 mg/L;90%;12 min 100−10−2 Yang et al. (2023)
Nanodefect-doped nanofiber membrane Propranolol Sufficient exposure on active sites 20 mg/L;99%;2.5 s 10−2 Gao et al. (2023)
Fe2O3 nanoparticles-doped CNTs Tetracycline Nanoconfinement-enhanced 1O2 generation 18 mg/L;98.4%;3 h 10−2 Guo et al. (2021)
Cu3P nanowire-modified Cu mesh Bacteria and viruses Local electric field-enhanced electroporation 106 CFU or PFU/mL;6.0-log;10 s 10−4 Huo et al. (2022)
Cu single atoms-modified CNT membrane Nitrate Enhanced adsorption of intermediates 10 mg-N/L;97% (86% N2 selectivity);10 s 100 Wang et al. (2023)
Microgyroid-modified electrode Nitrate Microporous-enabled flow pattern control 50 mg-N/L;95%;2 h 101 Yu et al. (2023)
Hydroxyl-terminated MXene filter Phosphate Sufficient exposure on active sites 5 mg-P/L;99%;30 min 10−3 Jin et al. (2023)
Graphene hydrogel Pb ion Microporous-enabled flow pattern control 20 mg/L;86%;40 min 10−2 Zhou et al. (2018)
Tab.1  Summary of applying electrified flow-through technologies for removing contaminants with low concentrations from water
  
  
  
  
1 B P Chaplin. (2019). The prospect of electrochemical technologies advancing worldwide water treatment. Accounts of Chemical Research, 52(3): 596–604
https://doi.org/10.1021/acs.accounts.8b00611
2 C ChenH JinP WangX SunM Jaroniec Y ZhengS Z (2024) Qiao. Local reaction environment in electrocatalysis. Chemical Society Reviews, Advance Article.
3 Y Chen, G Zhang, Q Ji, H Lan, H Liu, J Qu. (2022). Visualization of electrochemically accessible sites in flow-through mode for maximizing available active area toward superior electrocatalytic ammonia oxidation. Environmental Science & Technology, 56(13): 9722–9731
https://doi.org/10.1021/acs.est.2c01707
4 Y Gao, S Liang, B Liu, C Jiang, C Xu, X Zhang, P Liang, M Elimelech, X Huang. (2023). Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation. Nature Communications, 14(1): 2059
https://doi.org/10.1038/s41467-023-37676-6
5 A B Grommet, M Feller, R Klajn. (2020). Chemical reactivity under nanoconfinement. Nature Nanotechnology, 15(4): 256–271
https://doi.org/10.1038/s41565-020-0652-2
6 D Guo, Y Liu, H Ji, C C Wang, B Chen, C Shen, F Li, Y Wang, P Lu, W Liu. (2021). Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement. Environmental Science & Technology, 55(6): 4045–4053
https://doi.org/10.1021/acs.est.1c00349
7 B C Hodges, E L Cates, J H Kim. (2018). Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nature Nanotechnology, 13(8): 642–650
https://doi.org/10.1038/s41565-018-0216-x
8 Z Huo, Y J Kim, Y Chen, T Song, Y Yang, Q Yuan, S W Kim. (2023). Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energy. Frontiers of Environmental Science & Engineering, 17(10): 118
https://doi.org/10.1007/s11783-023-1718-9
9 Z Y Huo, Y Du, Z Chen, Y H Wu, H Y Hu. (2020). Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: a state-of-the-art review. Water Research, 173: 115581
https://doi.org/10.1016/j.watres.2020.115581
10 Z Y Huo, Y J Kim, I Y Suh, D M Lee, J H Lee, Y Du, S Wang, H J Yoon, S W Kim. (2021). Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nature Communications, 12(1): 3693
https://doi.org/10.1038/s41467-021-24028-5
11 Z Y Huo, L R Winter, X Wang, Y Du, Y H Wu, U Hübner, H Y Hu, M Elimelech. (2022). Synergistic nanowire-enhanced electroporation and electrochlorination for highly efficient water disinfection. Environmental Science & Technology, 56(15): 10925–10934
https://doi.org/10.1021/acs.est.2c01793
12 Z Y Huo, X Xie, T Yu, Y Lu, C Feng, H Y Hu. (2016). Nanowire-modified three-dimensional electrode enabling low-voltage electroporation for water disinfection. Environmental Science & Technology, 50(14): 7641–7649
https://doi.org/10.1021/acs.est.6b01050
13 L Jin, Y Ren, W Zheng, F Pan, S You, Y Liu. (2023). Surface engineering of electrified MXene filter for enhanced phosphate removal. ACS ES&T Engineering, 3(12): 2243–2251
https://doi.org/10.1021/acsestengg.3c00240
14 Y Kang, Z Gu, B Ma, W Zhang, J Sun, X Huang, C Hu, W Choi, J Qu. (2023). Unveiling the spatially confined oxidation processes in reactive electrochemical membranes. Nature Communications, 14(1): 6590
https://doi.org/10.1038/s41467-023-42224-3
15 M Liu, Y Pang, B Zhang, Luna P De, O Voznyy, J Xu, X Zheng, C T Dinh, F Fan, C Cao. et al.. (2016). Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 537(7620): 382–386
https://doi.org/10.1038/nature19060
16 T Liu, S Xiao, N Li, J Chen, X Zhou, Y Qian, C H Huang, Y Zhang. (2023). Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nature Communications, 14(1): 2881
https://doi.org/10.1038/s41467-023-38677-1
17 Y Liu, G Gao, C D Vecitis. (2020). Prospects of an electroactive carbon nanotube membrane toward environmental applications. Accounts of Chemical Research, 53(12): 2892–2902
https://doi.org/10.1021/acs.accounts.0c00544
18 C Meng, B Ding, S Zhang, L Cui, K K Ostrikov, Z Huang, B Yang, J H Kim, Z Zhang. (2022). Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels. Nature Communications, 13(1): 4010
https://doi.org/10.1038/s41467-022-31807-1
19 D B Miklos, C Remy, M Jekel, K G Linden, J E Drewes, U Hübner. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment: a critical review. Water Research, 139: 118–131
https://doi.org/10.1016/j.watres.2018.03.042
20 S Pei, Y Wang, S You, Z Li, N Ren. (2022). Electrochemical removal of chlorophenol pollutants by reactive electrode membranes: scale-up strategy for engineered applications. Engineering (Beijing), 9: 77–84
https://doi.org/10.1016/j.eng.2021.11.017
21 J Qian, X Gao, B Pan. (2020). Nanoconfinement-mediated water treatment: From fundamental to application. Environmental Science & Technology, 54(14): 8509–8526
https://doi.org/10.1021/acs.est.0c01065
22 M Rahimi, A P Straub, F Zhang, X Zhu, M Elimelech, C A Gorski, B E Logan. (2018). Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy & Environmental Science, 11(2): 276–285
https://doi.org/10.1039/C7EE03026F
23 M Sun, X Wang, L R Winter, Y Zhao, W Ma, T Hedtke, J H Kim, M Elimelech. (2021). Electrified membranes for water treatment applications. ACS ES&T Engineering, 1(4): 725–752
https://doi.org/10.1021/acsestengg.1c00015
24 Y Sun, S Bai, X Wang, N Ren, S You. (2023). Prospective life cycle assessment for the electrochemical oxidation wastewater treatment process: from laboratory to industrial scale. Environmental Science & Technology, 57(3): 1456–1466
https://doi.org/10.1021/acs.est.2c04185
25 X Wang, M Sun, Y Zhao, C Wang, W Ma, M S Wong, M Elimelech. (2020). In situ electrochemical generation of reactive chlorine species for efficient ultrafiltration membrane self-cleaning. Environmental Science & Technology, 54(11): 6997–7007
https://doi.org/10.1021/acs.est.0c01590
26 X Wang, X Wu, W Ma, X Zhou, S Zhang, D Huang, L R Winter, J H Kim, M Elimelech. (2023). Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate. Proceedings of the National Academy of Sciences of the United States of America, 120(11): e2217703120
https://doi.org/10.1073/pnas.2217703120
27 Q Xia, C Chen, Y Yao, J Li, S He, Y Zhou, T Li, X Pan, Y Yao, L Hu. (2021). A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability, 4(7): 627–635
https://doi.org/10.1038/s41893-021-00702-w
28 K Yang, X Zhang, D Zu, H Zhou, J Ma, Z Yang. (2023). Shifting emphasis from electro- to catalytically active sites: Effects of pore size of flow-through anodes on water purification. Environmental Science & Technology, 57(48): 20421–20430
https://doi.org/10.1021/acs.est.3c07448
29 Z Yang, J Qian, A Yu, B Pan. (2019). Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proceedings of the National Academy of Sciences of the United States of America, 116(14): 6659–6664
https://doi.org/10.1073/pnas.1819382116
30 Y Yu, S Pei, J Zhang, N Ren, S You. (2023). Bio-inspired porous composite electrode for enhanced mass transfer and electrochemical water purification by modifying local flow pattern. Advanced Functional Materials, 33(26): 2214725
https://doi.org/10.1002/adfm.202214725
31 Q Yuan, P Li, J Liu, Y Lin, Y Cai, Y Ye, C Liang. (2017). Facet-dependent selective adsorption of Mn-doped α-Fe2O3 nanocrystals toward heavy-metal ions. Chemistry of Materials, 29(23): 10198–10205
https://doi.org/10.1021/acs.chemmater.7b04114
32 Q Yuan, D Zhang, P Yu, R Sun, H Javed, G Wu, P J J Alvarez. (2020). Selective adsorption and photocatalytic degradation of extracellular antibiotic resistance genes by molecularly-imprinted graphitic carbon nitride. Environmental Science & Technology, 54(7): 4621–4630
https://doi.org/10.1021/acs.est.9b06926
33 J Zhao, C Fu, K Ye, Z Liang, F Jiang, S Shen, X Zhao, L Ma, Z Shadike, X Wang. et al.. (2022). Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nature Communications, 13(1): 685
https://doi.org/10.1038/s41467-022-28346-0
34 Y Zhao, M Sun, X Wang, C Wang, D Lu, W Ma, S A Kube, J Ma, M Elimelech. (2020). Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nature Communications, 11(1): 6228
https://doi.org/10.1038/s41467-020-20071-w
35 Y Zhou, Q Ji, H Liu, J Qu. (2018). Pore structure-dependent mass transport in flow-through electrodes for water remediation. Environmental Science & Technology, 52(13): 7477–7485
https://doi.org/10.1021/acs.est.8b01728
36 K Zuo, S Garcia-Segura, G A Cerrón-Calle, F Y Chen, X Tian, X Wang, X Huang, H Wang, P J J Alvarez, J Lou. et al.. (2023). Electrified water treatment: fundamentals and roles of electrode materials. Nature Reviews. Materials, 8(7): 472–490
https://doi.org/10.1038/s41578-023-00564-y
[1] Shengqi Zhang, Qian Yin, Siqin Wang, Xin Yu, Mingbao Feng. Integrated risk assessment framework for transformation products of emerging contaminants: what we know and what we should know[J]. Front. Environ. Sci. Eng., 2023, 17(7): 91-.
[2] Bin Wang, Liping Heng, Qian Sui, Zheng Peng, Xuezhi Xiao, Minghui Zheng, Jianxin Hu, Heidelore Fiedler, Damià Barceló, Gang Yu. Insight of chemical environmental risk and its management from the vinyl chloride accident[J]. Front. Environ. Sci. Eng., 2023, 17(4): 52-.
[3] Han Qu, Hongting Diao, Jiajun Han, Bin Wang, Gang Yu. Understanding and addressing the environmental risk of microplastics[J]. Front. Environ. Sci. Eng., 2023, 17(1): 12-.
[4] Bin Wang, Gang Yu. Emerging contaminant control: From science to action[J]. Front. Environ. Sci. Eng., 2022, 16(6): 81-.
[5] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[6] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed