Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (10) : 131    https://doi.org/10.1007/s11783-024-1891-5
“Forever chemicals”: a sticky environmental problem
Junhua Fang1, Shaolin Li1(), Rongliang Qiu2,3, Wei-xian Zhang1,2()
1. College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
2. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
3. College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
 Download: PDF(1685 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● “Forever chemicals” are being redefined in terms of environmental lifespans.

● Novel degradation technologies offer promising PFAS remediation solutions.

● Global Collaboration in responding to the PFAS crisis is emphasized.

The discovery and widespread use of per- and poly-fluoroalkyl substances (PFAS) have exemplified the beneficial role of chemistry in modern life, yet they have also underscored significant environmental and health concerns. Termed “forever chemicals” due to their remarkable persistence, PFAS present formidable challenges in terms of contamination and toxicity. Efforts to address these challenges have led to the development of innovative degradation technologies, such as hydrothermal alkali treatment (HALT), low-temperature mineralization, and mechanochemical degradation, offering promising solutions to PFAS remediation. However, these advancements must be accompanied by robust investment in research, collaboration among stakeholders, and global responsibility to ensure effective management of PFAS contamination and mitigate its adverse impacts on ecosystems and human health.

Keywords PFAS      Degradation technologies      Environmental remediation      Global responsibility     
Corresponding Author(s): Shaolin Li,Wei-xian Zhang   
Issue Date: 16 July 2024
 Cite this article:   
Junhua Fang,Shaolin Li,Rongliang Qiu, et al. “Forever chemicals”: a sticky environmental problem[J]. Front. Environ. Sci. Eng., 2024, 18(10): 131.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1891-5
https://academic.hep.com.cn/fese/EN/Y2024/V18/I10/131
Fig.1  (a) Forever chemicals are widely used in household products. (b) Estimated half-lives of some halogenated aliphatic compounds. The half-life values are calculated from measuring the hydrolysis rate constants and also derived from the Arrhenius parameters of neutral and alkaline hydrolysis reactions, see also Supplementary Materials. Data are from Mabey and Mill (1978), Jeffers et al. (1989), and Jeffers and Wolfe (1996).
Fig.2  (a) Degradation pathways of perfluoroalkyl carboxylic acids (PFCA) and perfluoroalkyl sulfonic acids (PFSA) (Wang et al., 2022). (b) Process for PFAS degradation using piezoelectric material-assisted ball milling (PZM-BM) (Yang et al., 2023). Reproduced with permission of American Chemical Society, Copyright of © 2023 Environmental Science & Technology Letters.Degradation of AFFF-contaminated groundwater (c) and soil (d) using HALT technology. Reaction conditions: 350 °C, 1 mol/L NaOH (c), 5 mol/L NaOH (d). Reproduced with permission of American Chemical Society, Copyright of © 2021 Environmental Science & Technology (Hao et al., 2021). Reproduced with permission of American Chemical Society, Copyright of © 2022 Environmental Science & Technology (Hao et al., 2022).
1 N J Battye, D J Patch, D M D Roberts, N M O’Connor, L P Turner, B H Kueper, M E Hulley, K P Weber. (2022). Use of a horizontal ball mill to remediate per- and polyfluoroalkyl substances in soil. Science of the Total Environment, 835: 155506
https://doi.org/10.1016/j.scitotenv.2022.155506
2 C Beans. (2021). How “forever chemicals” might impair the immune system. Proceedings of the National Academy of Sciences of the United States of America, 118(15): e2105018118
https://doi.org/10.1073/pnas.2105018118
3 M J Bentel, Y C Yu, L H Xu, Z Li, B M Wong, Y J Men, J Y Liu. (2019). Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environmental Science & Technology, 53(7): 3718–3728
https://doi.org/10.1021/acs.est.8b06648
4 S Biswas, B M Wong. (2024). Beyond conventional density functional theory: advanced quantum dynamical methods for understanding degradation of per- and polyfluoroalkyl substances. ACS ES&T Engineering, 4(1): 96–104
https://doi.org/10.1021/acsestengg.3c00216
5 A J Blomberg, E Noren, L S Haug, C Lindh, A Sabaredzovic, D Pineda, K Jakobsson, C Nielsen. (2023). Estimated transfer of perfluoroalkyl substances (PFAS) from maternal serum to breast milk in women highly exposed from contaminated drinking water: a study in the Ronneby Mother-Child Cohort. Environmental Health Perspectives, 131(1): 17005
https://doi.org/10.1289/EHP11292
6 R I Boyd, S Ahmad, R Singh, Z Fazal, G S Prins, Z Madak Erdogan, J Irudayaraj, M J Spinella. (2022). Toward a mechanistic understanding of poly- and perfluoroalkylated substances and cancer. Cancers (Basel), 14(12): 2919
https://doi.org/10.3390/cancers14122919
7 L Butruille, P Jubin, E Martin, M S Aigrot, M Lhomme, J B Fini, B Demeneix, B Stankoff, C Lubetzki, B Zalc. et al.. (2023). Deleterious functional consequences of perfluoroalkyl substances accumulation into the myelin sheath. Environment International, 180: 108211
https://doi.org/10.1016/j.envint.2023.108211
8 M Chaudhary, M Sela-Adler, A Ronen, O Nir (2023). Efficient PFOA removal from drinking water by a dual-functional mixed-matrix-composite nanofiltration membrane. npj Clean Water, 6(1): 77
9 B Cong, S Li, S Liu, W Mi, S Liu, Z Zhang, Z Xie. (2022). Source and distribution of emerging and legacy persistent organic pollutants in the basins of the Eastern Indian Ocean. Environmental Science & Technology, 56(7): 4199–4209
https://doi.org/10.1021/acs.est.1c08743
10 J Cui, P Gao, Y Deng. (2020). Destruction of per- and polyfluoroalkyl substances (PFAS) with advanced reduction processes (ARPs). Environmental Science & Technology, 54(7): 3752–3766
https://doi.org/10.1021/acs.est.9b05565
11 Y Dai, J Zhao, C Sun, D Li, X Liu, Z Wang, T Yue, B Xing. (2022). Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment. Frontiers of Environmental Science & Engineering, 16(10): 136
https://doi.org/10.1007/s11783-022-1571-2
12 B B de Souza, J Meegoda. (2024). Insights into PFAS environmental fate through computational chemistry: a review. Science of the Total Environment, 926: 171738
https://doi.org/10.1016/j.scitotenv.2024.171738
13 J L Do, T Friscic. (2017). Mechanochemistry: a force of synthesis. ACS Central Science, 3(1): 13–19
https://doi.org/10.1021/acscentsci.6b00277
14 S Endo. (2023). Intermolecular interactions, solute descriptors, and partition properties of neutral per- and polyfluoroalkyl substances (PFAS). Environmental Science & Technology, 57(45): 17534–17541
https://doi.org/10.1021/acs.est.3c07503
15 M G Evich, M J B Davis, J P Mccord, B Acrey, J A Awkerman, D R U Knappe, A B Lindstrom, T F Speth, C Tebes-Stevens, M J Strynar. et al.. (2022). Per- and polyfluoroalkyl substances in the environment. Science, 375(6580): eabg9065
https://doi.org/10.1126/science.abg9065
16 J Fang, S Li, T Gu, A Liu, R Qiu, W X Zhang. (2024a). Treatment of per- and polyfluoroalkyl substances (PFAS): a review of transformation technologies and mechanisms. Journal of Environmental Chemical Engineering, 12(1): 111833
https://doi.org/10.1016/j.jece.2023.111833
17 J Fang, K Xu, A Liu, Y Xue, L Tie, Z Deng, R Qiu, W X Zhang. (2024b). Selective perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) adsorption by nanoscale zero-valent iron (nZVI): performance and mechanisms. Environmental Science. Nano, 11(5): 1915–1925
https://doi.org/10.1039/d3en00987d
18 S E Fenton, A Ducatman, A Boobis, J C Dewitt, C Lau, C Ng, J S Smith, S M Roberts. (2021). Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environmental Toxicology and Chemistry, 40(3): 606–630
https://doi.org/10.1002/etc.4890
19 J Glüge, M Scheringer, I T Cousins, J C Dewitt, G Goldenman, D Herzke, R Lohmann, C A Ng, X Trier, Z Wang. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science. Processes & Impacts, 22(12): 2345–2373
https://doi.org/10.1039/D0EM00291G
20 N Hamid, M Junaid, M Sultan, S T Yoganandham, O M Chuan. (2024). The untold story of PFAS alternatives: insights into the occurrence, ecotoxicological impacts, and removal strategies in the aquatic environment. Water Research, 250: 121044
https://doi.org/10.1016/j.watres.2023.121044
21 F Han, Y Wang, J Li, B Lyu, J Liu, J Zhang, Y Zhao, Y Wu. (2023). Occurrences of legacy and emerging per- and polyfluoroalkyl substances in human milk in China: results of the third National Human Milk Survey (2017–2020). Journal of Hazardous Materials, 443: 130163
https://doi.org/10.1016/j.jhazmat.2022.130163
22 S Hao, Y J Choi, R A Deeb, T J Strathmann, C P Higgins. (2022). Application of hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in contaminated groundwater and soil. Environmental Science & Technology, 56(10): 6647–6657
https://doi.org/10.1021/acs.est.2c00654
23 S L Hao, Y J Choi, B R Wu, C P Higgins, R Deeb, T J Strathmann. (2021). Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film-forming foam. Environmental Science & Technology, 55(5): 3283–3295
https://doi.org/10.1021/acs.est.0c06906
24 C J C Hogue, E G Enterprise (2019). How to say goodbye to PFAS. 97(46): 22–25
25 C Holder, N Deluca, J Luh, P Alexander, J M Minucci, D A Vallero, K Thomas, E A C Hubal. (2023). Systematic evidence mapping of potential exposure pathways for per- and polyfluoroalkyl substances based on measured occurrence in multiple media. Environmental Science & Technology, 57(13): 5107–5116
https://doi.org/10.1021/acs.est.2c07185
26 X C Hu, D Q Andrews, A B Lindstrom, T A Bruton, L A Schaider, P Grandjean, R Lohmann, C C Carignan, A Blum, S A Balan. et al.. (2016). Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environmental Science & Technology Letters, 3(10): 344–350
https://doi.org/10.1021/acs.estlett.6b00260
27 D J Ivy, M Rigby, M Baasandorj, J B Burkholder, R G Prinn. (2012). Global emission estimates and radiative impact of C4F10, C5F12, C6F14, C7F16 and C8F18. Atmospheric Chemistry and Physics, 12(16): 7635–7645
https://doi.org/10.5194/acp-12-7635-2012
28 P M Jeffers, L M Ward, L M Woytowitch, N L Wolfe. (1989). Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes. Environmental Science & Technology, 23(8): 965–969
https://doi.org/10.1021/es00066a006
29 P M Jeffers, N Lee Wolfe. (1996). Homogeneous hydrolysis rate constants—Part II: additions, corrections and halogen effects. Environmental Toxicology and Chemistry, 15(7): 1066–1070
https://doi.org/10.1002/etc.5620150708
30 B Jin, H Liu, S Che, J Gao, Y Yu, J Liu, Y Men. (2023). Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. Nature Water, 1(5): 451–461
https://doi.org/10.1038/s44221-023-00077-6
31 S Joudan, R J Lundgren. (2022). Taking the “F” out of forever chemicals. Science, 377(6608): 816–817
https://doi.org/10.1126/science.add1813
32 H E Kvalem, U C Nygaard, Carlsen K C Lødrup, K H Carlsen, L S Haug, B Granum. (2020). Perfluoroalkyl substances, airways infections, allergy and asthma related health outcomes: implications of gender, exposure period and study design. Environment International, 134: 105259
https://doi.org/10.1016/j.envint.2019.105259
33 X Lei, Q Lian, X Zhang, T K Karsili, W Holmes, Y Chen, M E Zappi, D D Gang. (2023). A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. Environmental Pollution, 321: 121138
https://doi.org/10.1016/j.envpol.2023.121138
34 S P Lenka, M Kah, L P Padhye. (2021). A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Research, 199: 117187
https://doi.org/10.1016/j.watres.2021.117187
35 S C E Leung, P Shukla, D C Chen, E Eftekhari, H J An, F Zare, N Ghasemi, D K Zhang, N T Nguyen, Q Li. (2022). Emerging technologies for PFOS/PFOA degradation and removal: a review. Science of the Total Environment, 827: 153669
https://doi.org/10.1016/j.scitotenv.2022.153669
36 L Li, Z H Zhai, J G Liu, J X Hu. (2015). Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012. Chemosphere, 129: 100–109
https://doi.org/10.1016/j.chemosphere.2014.11.049
37 X Lim. (2023). Could the world go PFAS-free? Proposal to ban ‘forever chemicals’ fuels debate. Nature, 620(7972): 24–27
https://doi.org/10.1038/d41586-023-02444-5
38 F Liu, S Jiang, S You, Y Liu. (2022a). Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review. Frontiers of Environmental Science & Engineering, 17(2): 18
https://doi.org/10.1007/s11783-023-1618-z
39 X Liu, Y Li, L Zeng, X Li, N Chen, S Bai, H He, Q Wang, C Zhang. (2022b). A review on mechanochemistry: approaching advanced energy materials with greener force. Advanced Materials, 34(46): 2108327
https://doi.org/10.1002/adma.202108327
40 X Lyu, F Xiao, C Shen, J Chen, C M Park, Y Sun, M Flury, D Wang. (2022). Per- and polyfluoroalkyl substances (PFAS) in subsurface environments: occurrence, fate, transport, and research prospect. Reviews of Geophysics, 60(3): e2021RG000765
https://doi.org/10.1029/2021RG000765
41 W Mabey, T Mill. (1978). Critical-review of hydrolysis of organic-compounds in water under environmental-conditions. Journal of Physical and Chemical Reference Data, 7(2): 383–415
https://doi.org/10.1063/1.555572
42 J N Meegoda, B Bezerra De Souza, M M Casarini, J A Kewalramani. (2022). A review of PFAS destruction technologies. International Journal of Environmental Research and Public Health, 19(24): 16397
https://doi.org/10.3390/ijerph192416397
43 D Muir, R Bossi, P Carlsson, M Evans, Silva A De, C Halsall, C Rauert, D Herzke, H Hung, R Letcher, F Rigét, A Roos. (2019). Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment: an update. Emerging Contaminants, 5: 240–271
https://doi.org/10.1016/j.emcon.2019.06.002
44 R T O’Neill, R Boulatov. (2021). The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nature Reviews. Chemistry, 5(3): 148–167
https://doi.org/10.1038/s41570-020-00249-y
45 J Oh, H M Shin, K Kannan, A M Calafat, R J Schmidt, I Hertz-Picciotto, D H Bennett. (2024). Per- and polyfluoroalkyl substances (PFAS) in serum of 2 to 5 year-old children: temporal trends, determinants, and correlations with maternal PFAS concentrations. Environmental Science & Technology, 58(7): 3151–3162
https://doi.org/10.1021/acs.est.3c08928
46 E Panieri, K Baralic, D Djukic-Cosic, A Buha Djordjevic, L Saso. (2022). PFAS molecules: a major concern for the human health and the environment. Toxics, 10(2): 44
https://doi.org/10.3390/toxics10020044
47 C Patel, E Andre-Joyaux, J A Leitch, Irujo-Labalde X M De, F Ibba, J Struijs, M A Ellwanger, R Paton, D L Browne, G Pupo. et al.. (2023). Fluorochemicals from fluorspar via a phosphate-enabled mechanochemical process that bypasses HF. Science, 381(6655): 302–306
https://doi.org/10.1126/science.adi1557
48 M Pesonen, K Vähäkangas. (2024). Involvement of per- and polyfluoroalkyl compounds in tumor development. Archives of Toxicology, 98(5): 1241–1252
https://doi.org/10.1007/s00204-024-03685-7
49 J Reinikainen, E Bouhoulle, J Sorvari. (2024). Inconsistencies in the EU regulatory risk assessment of PFAS call for readjustment. Environment International, 186: 108614
https://doi.org/10.1016/j.envint.2024.108614
50 J Rhee, E Loftfield, D Albanes, T M Layne, R Stolzenberg-Solomon, L M Liao, M C Playdon, S I Berndt, J N Sampson, N D Freedman. et al.. (2023). A metabolomic investigation of serum perfluorooctane sulfonate and perfluorooctanoate. Environment International, 180: 108198
https://doi.org/10.1016/j.envint.2023.108198
51 B Ruffle, C Archer, K Vosnakis, J D Butler, C W Davis, B Goldsworthy, R Parkman, T A Key. (2024). US and international per- and polyfluoroalkyl substances surface water quality criteria: a review of the status, challenges, and implications for use in chemical management and risk assessment. Integrated Environmental Assessment and Management, 20(1): 36–58
https://doi.org/10.1002/ieam.4776
52 C Sonne, M S Bank, B M Jenssen, T M Cieseielski, J Rinklebe, S S Lam, M Hansen, R Bossi, K Gustavson, R Dietz. (2023). PFAS pollution threatens ecosystems worldwide. Science, 379(6635): 887–888
https://doi.org/10.1126/science.adh0934
53 K Steenland, T Fletcher, C R Stein, S M Bartell, L Darrow, M J Lopez-Espinosa, P Barry Ryan, D A Savitz. (2020). Review: evolution of evidence on PFOA and health following the assessments of the C8 Science Panel. Environment International, 145: 106125
https://doi.org/10.1016/j.envint.2020.106125
54 X Tan, Z Jiang, Y Huang. (2022). Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid. Frontiers of Environmental Science & Engineering, 17(1): 3
https://doi.org/10.1007/s11783-023-1603-6
55 B Trang, Y Li, X S Xue, M Ateia, K N Houk, W R Dichtel. (2022). Low-temperature mineralization of perfluorocarboxylic acids. Science, 377(6608): 839–845
https://doi.org/10.1126/science.abm8868
56 L P Turner, B H Kueper, K M Jaansalu, D J Patch, N Battye, O El-Sharnouby, K G Mumford, K P Weber. (2021). Mechanochemical remediation of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) amended sand and aqueous film-forming foam (AFFF) impacted soil by planetary ball milling. Science of the Total Environment, 765: 142722
https://doi.org/10.1016/j.scitotenv.2020.142722
57 M Uhl, G Schoeters, E Govarts, W Bil, T Fletcher, L S Haug, R Hoogenboom, C Gundacker, X Trier, M F Fernandez. et al.. (2023). PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU. International Journal of Hygiene and Environmental Health, 250: 114168
https://doi.org/10.1016/j.ijheh.2023.114168
58 J Wang, Z Lin, X He, M Song, P Westerhoff, K Doudrick, D Hanigan. (2022). Critical review of thermal decomposition of per- and polyfluoroalkyl substances: mechanisms and implications for thermal treatment processes. Environmental Science & Technology, 56(9): 5355–5370
https://doi.org/10.1021/acs.est.2c02251
59 J Wang, M Song, I Abusallout, D Hanigan. (2023). Thermal decomposition of two gaseous perfluorocarboxylic acids: products and mechanisms. Environmental Science & Technology, 57(15): 6179–6187
https://doi.org/10.1021/acs.est.2c08210
60 Z Y Wang, I T Cousins, M Scheringer, R C Buck, K Hungerbuhler. (2014). Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environment International, 70: 62–75
https://doi.org/10.1016/j.envint.2014.04.013
61 T Wanzek, J F Stults, M G Johnson, J A Field, M Kleber. (2023). Role of mineral-organic interactions in PFAS retention by AFFF- impacted soil. Environmental Science & Technology, 57(13): 5231–5242
https://doi.org/10.1021/acs.est.2c08806
62 F Xiao, P Challa Sasi, A Alinezhad, R Sun, M Abdulmalik Ali. (2023). Thermal phase transition and rapid degradation of forever chemicals (PFAS) in spent media using induction heating. ACS ES&T Engineering, 3(9): 1370–1380
https://doi.org/10.1021/acsestengg.3c00114
63 S S R K C Yamijala, R Shinde, B M Wong. (2020). Real-time degradation dynamics of hydrated per- and polyfluoroalkyl substances (PFASs) in the presence of excess electrons. Physical Chemistry Chemical Physics, 22(13): 6804–6808
https://doi.org/10.1039/C9CP06797C
64 N Yang, S Yang, Q Ma, C Beltran, Y Guan, M Morsey, E Brown, S Fernando, T M Holsen, W Zhang. et al.. (2023). Solvent-free nonthermal destruction of PFAS chemicals and PFAS in sediment by piezoelectric ball milling. Environmental Science & Technology Letters, 10(2): 198–203
https://doi.org/10.1021/acs.estlett.2c00902
65 Y S Zholdassov, L Yuan, S R Garcia, R W Kwok, A Boscoboinik, D J Valles, M Marianski, A Martini, R W Carpick, A B Braunschweig. (2023). Acceleration of Diels-Alder reactions by mechanical distortion. Science, 380(6649): 1053–1058
https://doi.org/10.1126/science.adf5273
[1] FSE-24064-OF-FJH_suppl_1 Download
[1] Wei Mao, Xuewu Shen, Lixun Zhang, Yang Liu, Zehao Liu, Yuntao Guan. A review on Bi2WO6-based photocatalysts synthesis, modification, and applications in environmental remediation, life medical, and clean energy[J]. Front. Environ. Sci. Eng., 2024, 18(7): 86-.
[2] Sajjad Haider, Rab Nawaz, Muzammil Anjum, Tahir Haneef, Vipin Kumar Oad, Salah Uddinkhan, Rawaiz Khan, Muhammad Aqif. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 111-.
[3] Xianjun Tan, Zhenying Jiang, Yuxiong Huang. Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid[J]. Front. Environ. Sci. Eng., 2023, 17(1): 3-.
[4] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[5] Yuankai ZHANG,Zhijiang HE,Hongchen WANG,Lu QI,Guohua LIU,Xiaojun ZHANG. Applications of hollow nanomaterials in environmental remediation and monitoring: A review[J]. Front. Environ. Sci. Eng., 2015, 9(5): 770-783.
[6] Yong QIU, He JING, Hanchang SHI, . Perfluorocarboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFASs) in surface and tap water around Lake Taihu in China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 301-310.
[7] Chad D. VECITIS, Hyunwoong PARK, Jie CHENG, Brian T. MADER, Michael R. HOFFMANN. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)[J]. Front Envir Sci Eng Chin, 2009, 3(2): 129-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed