Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (3) : 289-293    https://doi.org/10.1007/s11783-009-0034-3
Research articles
Photocatalytic activity of ZnO films with micro-grid structure
Chunzhi LI , Wenwen WANG , Junying ZHANG , Hailing ZHU , Weiwei ZHANG , Tianmin WANG ,
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China;
 Download: PDF(299 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A layer of zinc oxide (ZnO) micro-grid was deposited on the surface of ZnO film using the DC reactive magnetron sputtering method and the micro-sphere lithography technique on glass substrates. Samples of this layer were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and ultraviolet-visible light spectroscopy. X-ray diffraction showed the high crystallinity of ZnO film and the regular arrangement of the micro-grid. The micro-grid ZnO has a lower specular reflection and a higher diffuse reflection, allowing incident light to reflect two or three times to enhance the usage of light. Photocatalytic degradation experiments on methylene blue using both ZnO micro-grid and ordinary film showed that the ZnO micro-grid has better photocatalytic properties than ordinary film. The ZnO micro-grid enhanced the photocatalytic efficiency of ZnO film by 28% with a degradation time of 300min.
Keywords Photocatalysis      ZnO micro-grid      polystyrene latex spheres template      diffuse reflection      
Issue Date: 05 September 2009
 Cite this article:   
Chunzhi LI,Weiwei ZHANG,Wenwen WANG, et al. Photocatalytic activity of ZnO films with micro-grid structure[J]. Front.Environ.Sci.Eng., 2009, 3(3): 289-293.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0034-3
https://academic.hep.com.cn/fese/EN/Y2009/V3/I3/289
Mitsuyu T, Ono S, Wasa K. Structures and SAW properties of rf-sputtered single-crystalfilms of ZnO on sapphire. Journal of AppliedPhysics, 1980, 51: 2464―2470

doi: 10.1063/1.328019
Potter R R. Enhanced photocurrent ZnO/CdS/CuInSe2 solarcells. Solar Cells, 1986, 16: 521―527

doi: 10.1016/0379-6787(86)90107-9
Igasaki Y, Saito H. The effects of depositionrate on the structural and electrical properties of ZnO: Al filmsdeposited on (1120) oriented sapphire substrates. ?Journal of Applied Physics, 1991, 70: 3613―3619

doi: 10.1063/1.349258
Pizzini S, Buttá N, Narducci D, Palladino M. Thick film ZnO resistive gas sensors. Journal of the Electrochemical Society, 1989, 136: 1945―1948

doi: 10.1149/1.2097092
van de Pol F C M, Blom F R, Popma Th J A. R. F. planar magnetron sputtered ZnO films. Thin Solid Films, 1991, 204: 349―364

doi: 10.1016/0040-6090(91)90074-8
Peng F, Chen S H, Zhang L, Wang H J, Xie Z Y. Preparation of visible- light responsenano-sized ZnO film and its photocatalytic degradation to methyl orange. Journal of Chemical Engineering, 2005, 21: 944―948
Fujishima A, Honda K. Electrochemical photolysisof water at semiconductor electrode. Nature, 1972, 238: 37―38

doi: 10.1038/238037a0
Peng F, Ren Y Q. Preparation of nano-TiO2-SnO2 composite film and itsphotocatalytic activity for toluene degradation. Chinese Journal of Catalysis, 2003, 24: 243―247 (in Chinese)
Nishizawa S, Tsurumi T, Hyodo H, Ishibashi Y, Ohashi N, Yamane M, Fukunaga O. Structural changes in ZnO/ NiO artificial superlattices made by ionbeam sputtering. Thin Solid Films, 1997, 302: 133―139

doi: 10.1016/S0040-6090(97)00008-4
Ataev B M, Bagamadova A M, Djabrailov A M, Mamedov V V, Rabadanov R A. Highly conductive and transparentGa-doped epitaxial ZnO films on sapphire by CVD. Thin Solid Films, 1995, 260: 19―20

doi: 10.1016/0040-6090(94)09485-3
Joseph B, Gopchandran K G, Thomas P V, Koshy Peter, Vaidyan V K. Study on the chemical spraydeposition of zinc oxide thin films and their structural and electricalproperties. Materials Chemistry and Physics, 1999, 58: 71―77

doi: 10.1016/S0254-0584(98)00257-0
Jia R, Wu G M, Song S Q. ZnO-based on thin film varistor prepared by spray pyrolysis. Journal of the Chinese Ceramic Society, 1999, 27 (4): 505―507 (in Chinese)
Bao D H, Gu H S, Kuang A X. Sol-gel derived c-axis oriented ZnO thin films. Thin Solid Films, 1998, 312: 37―39

doi: 10.1016/S0040-6090(97)00302-7
Ishizaki H, Imaizumi M, Matsuda S, Izaki M, Ito T. Incorporation of boron in ZnO film froman aqueous solution containing zinc nitrate and dimethylamine-boraneby electrochemical reaction. Thin SolidFilms, 2002, 411:65―68

doi: 10.1016/S0040-6090(02)00189-X
Li Z W, Gao W. ZnO Thin films with DC andRF reactive sputtering. Materials Letters, 2004, 58:1363―1370

doi: 10.1016/j.matlet.2003.09.028
Pan F, Zhang J Y, Cai C, Wang T M. Influenceof metal (Au, Ag) micro-grid on the photocatalytic activity of TiO2 film. Catalysis Letters, 2008, 123: 51―55

doi: 10.1007/s10562-007-9392-2
Wang W W, Diao X G, Wang Z, Yang M, Wang T M, Wu Z. Preparation and characterization of high-performance direct currentmagnetron sputtered ZnO: Al films. ThinSolid Films, 2005, 491: 54―60

doi: 10.1016/j.tsf.2005.05.021
Chu W. Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process. Chemosphere, 2001, 44: 935―941

doi: 10.1016/S0045-6535(00)00556-7
[1] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[2] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[3] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[4] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[5] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[6] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[7] Lei LI, Jian XU, Changsheng GUO, Yuan ZHANG. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture[J]. Front Envir Sci Eng, 2013, 7(3): 382-387.
[8] Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN. Improved nitrogen removal in dual-contaminated surface water by photocatalysis[J]. Front Envir Sci Eng, 2012, 6(3): 428-436.
[9] YiangChen CHOU, Young KU. Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor[J]. Front Envir Sci Eng, 2012, 6(2): 149-155.
[10] Chao QIN, Shaogui YANG, Cheng SUN, Jia ZHOU, Manjun ZHAN, Rongjun WANG, Huanxing CAI, . Investigation of the effects of humic acid and H 2 O 2 on the photocatalytic degradation of atrazine assisted by microwave[J]. Front.Environ.Sci.Eng., 2010, 4(3): 321-328.
[11] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed