Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (2) : 149-155    https://doi.org/10.1007/s11783-010-0296-9
RESEARCH ARTICLE
Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor
YiangChen CHOU, Young KU()
Department of Chemical Engineering, Taiwan University of Science and Technology, Taipei 10607, China
 Download: PDF(331 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gaseous NO was photocatalytically reduced at room temperature by photo-assisted selective catalytic reduction (photo-SCR) with ammonia over TiO2 in this study. NO reduction efficiency and N2 selectivity were determined from gases composition at the outlet stream of photoreactor. Effect of operating conditions, e.g. light intensity and inlet concentrations of ammonia and oxygen, on the NO reduction efficiency and N2 selectivity were discussed to determine the feasible operating condition for photocatalytic reduction of NO. Experimental results showed that selective catalytic reduction of NO with ammonia over TiO2 in the presence of oxygen was a spontaneous reaction in dark. The photoirradiation on the TiO2 surface caused remarkable photocatalytic reduction of NO to form N2, NO2, and N2O under 254 nm UV illuminations, while almost 90% of N2 selectivity was achieved in this study. The ammonia and oxygen molecules played the roles of reductant and oxidant for NO reduction and active sites regeneration, respectively. The reduction of NO was found to be increased with the increase of inlet ammonia and oxygen concentrations until specific concentrations because of the limited active sites on the surface of TiO2. The kinetic model proposed in this study can be used to reasonably describe the reaction mechanism of photo-SCR.

Keywords photo-SCR      photocatalysis      NO reduction      Eley-Rideal model     
Corresponding Author(s): KU Young,Email:ku508@mail.ntust.edu.tw   
Issue Date: 01 April 2012
 Cite this article:   
YiangChen CHOU,Young KU. Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor[J]. Front Envir Sci Eng, 2012, 6(2): 149-155.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0296-9
https://academic.hep.com.cn/fese/EN/Y2012/V6/I2/149
1 Parvulescu V, Grange P, Delmon B. Catalytic removal of NO. Catalysis Today , 1998, 46(4): 233-316
doi: 10.1016/S0920-5861(98)00399-X
2 Bosch H, Janssen F. Formation and control of nitrogen oxides. Catalysis Today , 1988, 2(4): 369-379
doi: 10.1016/0920-5861(88)80002-6
3 Cho S M. Properly apply selective catalytic reduction for NOx removal. Chemical Engineering Progress , 1994, 90: 39-45
4 He W, Zhu T, Li J. NO conversion by positive streamer discharge-Effects of gas compositions and reaction conditions. Frontiers of Environmental Science & Engineering in China , 2009, 3(2): 186-193
5 Huang B, Huang R, Jin D, Ye D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catalysis Today , 2007, 126(3-4): 279-283
doi: 10.1016/j.cattod.2007.06.002
6 Tanaka T, Teramura K, Funabiki T. Photoassisted selective catalytic reduction of NO with ammonia in the presence of oxygen at low temperature. Physical Chemistry Chemical Physics , 2000, 2(12): 2681-2682
doi: 10.1039/b003264f
7 Tanaka T, Teramura K, Arakaki K, Funabiki T. Photoassisted NO reduction with NH3 over TiO2 photocatalyst. Chemical Communications , 2002, (22): 2742-2743
pmid:12397997
8 Chou Y C, Ku Y. NO reduction and N2 selectivity by photo-SCR under various operating conditions. Chemical Engineering Journal , 2010, 162(2): 696-701
doi: 10.1016/j.cej.2010.06.028
9 Teramura K, Tanaka T, Funabiki T. Photoassisted selective catalytic reduction of NO with ammonia in the presence of Oxygen over TiO2. Langmuir , 2003, 19(4): 1209-1214
doi: 10.1021/la0263918
10 Teramura K, Tanaka T, Yamazoe S, Arakaki K, Funabiki T. Kinetic study of photo-SCR with NH3 over TiO2. Applied Catalysis B: Environmental , 2004, 53(1): 29-36
doi: 10.1016/j.apcatb.2004.05.005
11 Yamazoe S, Okumura T, Teramura K, Tanaka T. Development of the efficient TiO2 photocatalyst in photoassisted selective catalytic reduction of NO with NH3. Catalysis Today , 2006, 111(3-4): 266-270
doi: 10.1016/j.cattod.2005.10.056
12 Ku Y, Ma C M, Shen Y S. Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile. Applied Catalysis B: Environmental , 2001, 34(3): 181-190
doi: 10.1016/S0926-3373(01)00216-8
13 Ma C M, Ku Y, Chou Y C, Jeng F T. Performance of tubular-type optical fiber reactor for decomposition of VOCs in gaseous phase. Journal of Environmental Economics and Management , 2008, 18: 363-369
14 Mohseni M, David A. Gas phase vinyl chloride (VC) oxidation using TiO2-based photocatalysis. Applied Catalysis B: Environmental , 2003, 46(2): 219-228
doi: 10.1016/S0926-3373(03)00223-6
15 Ma C M, Ku Y, Kuo Y L, Chou Y C, Jeng F T. Effects of silver on the photocatalytic degradation of gaseous isopropanol. Water, Air, and Soil Pollution , 2009, 197(1-4): 313-321
doi: 10.1007/s11270-008-9813-x
16 Kim S B, Hong S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis B: Environmental , 2002, 35(4): 305-315
doi: 10.1016/S0926-3373(01)00274-0
[1] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[2] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[3] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[4] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[5] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[6] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[7] Lei LI, Jian XU, Changsheng GUO, Yuan ZHANG. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture[J]. Front Envir Sci Eng, 2013, 7(3): 382-387.
[8] Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN. Improved nitrogen removal in dual-contaminated surface water by photocatalysis[J]. Front Envir Sci Eng, 2012, 6(3): 428-436.
[9] Chao QIN, Shaogui YANG, Cheng SUN, Jia ZHOU, Manjun ZHAN, Rongjun WANG, Huanxing CAI, . Investigation of the effects of humic acid and H 2 O 2 on the photocatalytic degradation of atrazine assisted by microwave[J]. Front.Environ.Sci.Eng., 2010, 4(3): 321-328.
[10] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
[11] Chunzhi LI , Wenwen WANG , Junying ZHANG , Hailing ZHU , Weiwei ZHANG , Tianmin WANG , . Photocatalytic activity of ZnO films with micro-grid structure[J]. Front.Environ.Sci.Eng., 2009, 3(3): 289-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed