Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (4) : 685-693    https://doi.org/10.1007/s11783-014-0752-z
RESEARCH ARTICLE
Ecotoxicity assessment of soil irrigated with domestic wastewater using different extractions
Wenyan LIANG(),Lili SUI,Yuan ZHAO,Feizhen LI,Lijun LIU,Di XIE
College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
 Download: PDF(273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The toxicity of soil irrigated with treated domestic wastewater (site A) and untreated gray wastewater (site B) were investigated. Soil extracts were prepared using distilled water, acid solvent (0.1 mol·L-1 HCl), and organic solvent (acetone:petroleum ether:cyclohexane= 1:1:1) to understand the type of pollutants responsible for the ecotoxicity associated with wastewater irrigation. The soil toxicity was assessed using a luminescence inhibition assay with Vibrio fischeri for acute toxicity, a micronucleus assay with Vicia faba root tips and a single cell gel electrophoresis assay of mice lymphocytes for genotoxicity. The physicochemical properties and the heavy metal (HM) contents of the irrigated soil were also analyzed. The results indicated that the wastewater irrigation at site A had no effects on the soil properties. With the exception of Pb, Zn, Fe, and Mn, the accumulation of HMs (Cu, Ni, and Cr) occurred. However, the irrigation at site A did not result in obvious acute toxicity or genotoxicity in the soil. The soil properties changed greatly, and HMs (Cu, Ni, and Cr) accumulated in site B. There were significant increases in the acute toxic and genotoxic effects in the soils from site B. The ecotoxicity in site B came primarily from organic-extractable pollutants.

Keywords ecotoxicology      domestic wastewater      soil irrigation      risk assessment      organic extraction     
Corresponding Author(s): Wenyan LIANG   
Online First Date: 16 September 2014    Issue Date: 25 June 2015
 Cite this article:   
Wenyan LIANG,Lili SUI,Yuan ZHAO, et al. Ecotoxicity assessment of soil irrigated with domestic wastewater using different extractions[J]. Front. Environ. Sci. Eng., 2015, 9(4): 685-693.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0752-z
https://academic.hep.com.cn/fese/EN/Y2015/V9/I4/685
site COD TN TP NH3-N TSS Fe Pb Cu Zn Cr TDS
A 33–52 30–38 0.3–1.7 15–17 8.0–14 0.11–0.21 0.02–0.04 N.D. N.D. N.D. 405–463
B 58–196 20–47 0.5–2.7 3.4–15 28–58 0.23–0.31 0.04–0.07 N.D. N.D. N.D. 312–358
Tab.1  Pollutant concentrations of the irrigation wastewater
Fig.1  Sampling scheme of irrigation site A (a) and site B (b). ●: Sampling points. Arabic numbers: No. of sampling points at each site. Dash line refers to water flow direction
sample No. pH EC /(μS·cm-1) CEC /(cmol·kg-1) Pb /(mg·kg-1) Cu /(mg·kg-1) Zn /(mg·kg-1) Ni /(mg·kg-1) Cr /(mg·kg-1) Fe /(g·kg-1) Mn /(mg·kg-1)
site A controla) 7.08 53 33.3 37.7 12.5 73.9 23.7 45.2 19.8 509
1 6.74 203 16.5 36.8 13.0 80.1 26.8 44.6 19.9 375
2 6.85 107 18.1 42.6 27.5 162 25.7 58.4 20.3 390
3 6.93 78 32.5 37.8 16.1 80.3 29.0 66.7 17.8 402
4 6.73 69 30.6 35.1 17.2 99.6 31.3 79.9 18.7 516
5 7.14 52 29.7 38.6 17.5 79.9 29.8 82.8 18.7 509
6 7.23 41 26.3 36.0 16.0 81.0 31.0 75.0 18.7 517
7 7.11 38 31.3 30.5 15.7 79.1 30.9 59.3 20.5 561
8 7.41 84 34.7 36.7 15.4 73.3 30.8 85.7 18.7 504
9 7.08 43 34.1 37.4 16.3 84.5 30.7 77.5 18.9 516
10 7.17 62 29.1 38.1 14.8* 84.2 29.1* 75.9* 18.7 492
averageb) 7.04 78 28.3 37.0 17.0 90.4 29.5 70.6 19.1 478
site B controla) 7.77 42 75.9 28.1 13.0 87.9 9.38 24.9 19.8 531
1 7.24 359 118 39.5 21.4 177 24.4 53.8 25.0 626
2 7.20 1043 150 34.1 20.9 136 18.1 34.1 17.4 344
3 7.52 807 125 32.0 13.8 75.3 31.0 62.5 20.7 308
4 7.09 769 66.6 34.2 16.4 80.6 18.4 50.9 22.1 404
5 7.27 57 63.7 22.4 13.7 85.9 17.8 58.7 23.7 483
6 7.47 99 90.3 32.4 18.6 114 14.7 29.4 11.3 313
averageb) 7.30 522* 102 32.4 17.5* 111 20.7* 48.2* 20.0 413
Tab.2  The physico-chemical properties and levels of heavy metals from two sites
Fig.2  Variations in the percentage of relative luminescence for water, acid, and organic extracts in irrigated soils from site A (a) and site B (b). Error bars indicate the S.D. (n = 3). Sample No. 0 is the control sample. *, p<0.05
Fig.3  Variations in the micronucleus of water, acid, and organic extracts of the irrigated soils from site A (a) and site B (b). Error bars indicate S.D. (n = 3). Sample No. 0 indicates the control sample. MCN % = micronucleus frequency
soil number water extract acid extract organic extract
site A control 1.72±0.21 3.97±0.69 25.36±2.07
1 1.01±0.11* 3.53±0.26 21.32±3.38
2 1.18±0.35 3.96±0.45 25.47±3.99
3 1.21±0.09* 4.53±0.87 23.54±1.27
4 1.43±0.40 3.26±0.38 22.05±2.55
5 1.21±0.25 3.33±0.35 25.63±3.96
6 1.93±0.66 3.60±0.46 31.16±1.63
7 2.72±0.20 3.92±0.38 33.12±3.03*
8 2.11±0.14* 3.32±0.14 28.67±2.56*
9 1.99±0.16 4.01±0.46 24.44±1.85
10 1.55±0.34 4.14±0.45 21.21±2.20
site B control 3.08±0.49 4.49±1.95 28.78±4.20
1 2.03±0.04* 5.50±1.05 65.05±2.41*
2 3.00±0.12 4.61±2.38 59.91±0.83*
3 5.39±1.58 5.69±2.63 48.58±1.58*
4 2.05±0.76 2.29±1.92 40.32±4.26*
5 1.43±0.26* 4.28±0.48 27.56±1.02
6 2.58±1.12 3.17±0.48 23.44±2.99
Tab.3  DNA damage in mouse lymphocytes (tail DNA %) from the extracts of irrigated soils
1 Castro E, Ma?as M P, Heras J D L. Effects of wastewater irrigation on soil properties and turfgrass growth. Water Science & Technology, 2011, 63(8): 1678–1688
https://doi.org/10.2166/wst.2011.335 pmid: 21866768
2 Abdu N, Abdulkadir A, Agbenin J O, Buerkert A. Vertical distribution of heavy metals in wastewater irrigated vegetable garden soils of three West African cities. Nutrient Cycling in Agroecosystems, 2011, 89(3): 387–397
https://doi.org/10.1007/s10705-010-9403-3
3 Gibson R, Durán-álvarez J C, Estrada K L, Chávez A, Jiménez Cisneros B. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 2010, 81(11): 1437–1445
https://doi.org/10.1016/j.chemosphere.2010.09.006 pmid: 20933253
4 Zeng L, Wang T, Han W, Yuan B, Liu Q, Wang Y, Jiang G. Spatial and vertical distribution of short chain chlorinated paraffins in soils from wastewater irrigated farmlands. Environmental Science & Technology, 2011, 45(6): 2100–2106
https://doi.org/10.1021/es103740v pmid: 21319735
5 Tarchouna L G, Merdy P, Raynaud M, Pfeifer H R, Lucas Y. Effects of long-term irrigation with treated wastewater. Part I: Evolution of soil physico-chemical properties. Applied Geochemistry, 2010, 25(11): 1703–1710
https://doi.org/10.1016/j.apgeochem.2010.08.018
6 Aleem A, Malik A. Genotoxic hazards of long-term application of wastewater on agricultural soil. Mutation Research, 2003, 538(1–2): 145–154
https://doi.org/10.1016/S1383-5718(03)00110-4 pmid: 12834763
7 Song Y F, Gong P, Wilke B M, Zhang W, Song X Y, Sun T H, Ackland M L. Genotoxicity assessment of soils from wastewater irrigation areas and bioremediation sites using the Vicia faba root tip micronucleus assay. Journal of Environmental Monitoring, 2007, 9(2): 182–186
https://doi.org/10.1039/b614246j pmid: 17285161
8 Yu G, Xiao R, Wang D, Zhou J, Wang Z. Assessing the ecological risk of soil irrigated with wastewater using in vitro cell bioassays. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(14): 1618–1627
https://doi.org/10.1080/10934520802329901 pmid: 18988099
9 Song Y F, Wilke B M, Song X Y, Gong P, Zhou Q X, Yang G F. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation. Chemosphere, 2006, 65(10): 1859–1868
https://doi.org/10.1016/j.chemosphere.2006.03.076 pmid: 16707147
10 Qiao M, Chen Y, Wang C X, Wang Z, Zhu Y G. DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters. Environmental Pollution, 2007, 148(1): 141–147
https://doi.org/10.1016/j.envpol.2006.10.033 pmid: 17175076
11 Courchesne F, Kruyts N, Legrand P. Labile zinc concentration and free copper ion activity in the rhizosphere of forest soils. Environmental Toxicology and Chemistry, 2006, 25(3): 635–642
https://doi.org/10.1897/04-593R.1 pmid: 16566146
12 Lagomarsino A, Mench M, Marabottini R, Pignataro A, Grego S, Renella G, Stazi S R. Copper distribution and hydrolase activities in a contaminated soil amended with dolomitic limestone and compost. Ecotoxicology and Environmental Safety, 2011, 74(7): 2013–2019
https://doi.org/10.1016/j.ecoenv.2011.06.013 pmid: 21798598
13 Cabrera G L, Rodriguez D M G. Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mutation Research, 1999, 426(2): 211–214
https://doi.org/10.1016/S0027-5107(99)00070-6 pmid: 10350600
14 Ehrlichmann H, Dott W, Eisentraeger A. Assessment of the water-extractable genotoxic potential of soil samples from contaminated sites. Ecotoxicology and Environmental Safety, 2000, 46(1): 73–80
https://doi.org/10.1006/eesa.1999.1875 pmid: 10805996
15 China Environmental Protection Bureau. Standard Methods for Examination of Water and Wastewater. 4th ed. Beijing: Chinese Environmental Science Press, 2004 (in Chinese)
16 Rusjan D, Strli? M, Pucko D, Koro?ec-Koruza Z. Copper accumulation regarding the soil characteristics in Sub-Mediterranean vine yards of Slovenia. Geoderma, 2007, 141(1–2): 111–118
https://doi.org/10.1016/j.geoderma.2007.05.007
17 Liang W, Chen L, Sui L, Yu J, Wang L, Shi H. Assessment of detoxification of microcystin extracts using electrochemical oxidation. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2011, 46(10): 1102–1112
https://doi.org/10.1080/10934529.2011.590721 pmid: 21806454
18 Majer B J, Grummt T, Uhl M, Knasmüller S. Use of plant bioassays for the detection of genotoxins in the aquatic environment. Acta Hydrochimica et Hydrobiologica, 2005, 33(1): 45–55
https://doi.org/10.1002/aheh.200300557
19 Marcato-Romain C E, Guiresse M, Cecchi M, Cotelle S, Pinelli E. New direct contact approach to evaluate soil genotoxicity using the Vicia faba micronucleus test. Chemosphere, 2009, 77(3): 345–350
https://doi.org/10.1016/j.chemosphere.2009.07.016 pmid: 19729185
20 Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gó?d? S, Koza Z, Wojcik A. A cross-platform public domain PC image-analysis program for the comet assay. Mutation Research, 2003, 534(1–2): 15–20
https://doi.org/10.1016/S1383-5718(02)00251-6 pmid: 12504751
21 Xu J, Wu L, Chang A C, Zhang Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: a preliminary assessment. Journal of Hazardous Materials, 2010, 183(1–3): 780–786
https://doi.org/10.1016/j.jhazmat.2010.07.094 pmid: 20719431
22 Yao H, Zhang S, Xue X, Yang J, Hu K, Yu X. Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China. Frontiers of Environmental Science & Engineering, 2013, 7(2): 273–280
https://doi.org/10.1007/s11783-013-0497-0
23 Singh A, Sharma R K, Agrawal M, Marshall F M. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Tropical Ecology, 2010, 51(2S): 375–387
24 Duan R, Fedler C B, Sheppard C D. Field study of salt balance of a land application system. Water, Air, & Soil Pollution, 2011, 215(1–4): 43–54
https://doi.org/10.1007/s11270-010-0455-4
25 Fonseca A, Herpin U, Paula A M, Victória R L, Melfi A J. Agricultural use of treated sewage effluents: agronomic and environmental implications and perspectives for Brazil. Scientia Agricola, 2007, 64(2): 194–209
https://doi.org/10.1590/S0103-90162007000200014
26 Girotti S, Ferri E N, Fumo M G, Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 2008, 608(1): 2–29
https://doi.org/10.1016/j.aca.2007.12.008 pmid: 18206990
27 Acheson C M, Zhou Q, Shan Y, Sayles G D, Kupferle M J. Comparing the solid phase and saline extract Microtox assays for two polycyclic aromatic hydrocarbon-contaminated soils. Environmental Toxicology and Chemistry, 2004, 23(2): 245–251
https://doi.org/10.1897/02-618 pmid: 14982368
28 Shen K, Shen C, Lu Y, Tang X, Zhang C, Chen X, Shi J, Lin Q, Chen Y. Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biological Research, 2009, 42(2): 183–187
https://doi.org/10.4067/S0716-97602009000200006 pmid: 19746263
29 Wang L J, Liu S S, Yuan J, Liu H L. Remarkable hormesis induced by 1-ethyl-3-methyl imidazolium tetrafluoroborate on Vibrio qinghaiensis sp.-Q67. Chemosphere, 2011, 84(10): 1440–1445
https://doi.org/10.1016/j.chemosphere.2011.04.049 pmid: 21561641
30 Frische T, H?per H. Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils. Chemosphere, 2003, 50(3): 415–427
https://doi.org/10.1016/S0045-6535(02)00603-3 pmid: 12656263
31 Niemi R M, Heiskanen I, Ahtiainen J H, Rahkonen A, M?ntykoski K, Welling L, Laitinen P, Ruuttunen P. Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Applied Soil Ecology, 2009, 41(3): 293–304
https://doi.org/10.1016/j.apsoil.2008.12.002
32 Tang J, Wang M, Wang F, Sun Q, Zhou Q. Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences-China, 2011, 23(5): 845–851
https://doi.org/10.1016/S1001-0742(10)60517-7 pmid: 21790059
33 Chen Y, Wang C, Wang Z, Huang S. Assessment of the contamination and genotoxicity of soil irrigated with wastewater. Plant and Soil, 2004, 261(1–2): 189–196
https://doi.org/10.1023/B:PLSO.0000035565.65775.3c
34 Lin D, Zhou Q, Xie X, Liu Y. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere, 2010, 81(10): 1328–1333
https://doi.org/10.1016/j.chemosphere.2010.08.027 pmid: 20825966
35 Zhu J, Zhao Z Y, Lu Y T. Evaluation of genotoxicity of combined soil pollution by cadmium and phenanthrene on earthworm. Journal of Environmental Sciences-China, 2006, 18(6): 1210–1215
https://doi.org/10.1016/S1001-0742(06)60064-8 pmid: 17294967
[1] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[4] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[5] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
[6] Xinshu Jiang, Yingxi Qu, Liquan Liu, Yuan He, Wenchao Li, Jun Huang, Hongwei Yang, Gang Yu. PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: Occurrence, removal and risk assessment[J]. Front. Environ. Sci. Eng., 2019, 13(2): 27-.
[7] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[8] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[9] Ying Han, Huiting Xie, Wenbin Liu, Haifeng Li, Mengjing Wang, Xuebin Chen, Xiao Liao, Nan Yan. Assessment of pollution of potentially harmful elements in soils surrounding a municipal solid waste incinerator, China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 7-.
[10] Wentao Zhao, Ying Guo, Shuguang Lu, Pingping Yan, Qian Sui. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 2-.
[11] Bingbing XU,Qiujin XU,Cunzhen LIANG,Li LI,Lijia JIANG. Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China[J]. Front. Environ. Sci. Eng., 2015, 9(3): 482-493.
[12] Yong YU,Laosheng WU. Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in fish (Morone saxatilis)[J]. Front. Environ. Sci. Eng., 2015, 9(3): 475-481.
[13] Yongshan CHEN,Xiuping XI,Gang YU,Qiming CAO,Bin WANG,François VINCE,Youwei HONG. Pharmaceutical compounds in aquatic environment in China: locally screening and environmental risk assessment[J]. Front. Environ. Sci. Eng., 2015, 9(3): 394-401.
[14] Jing FENG,Yili WANG,Xueyuan JI,Dongqin YUAN,Hui LI. Performance and bioparticle growth of anaerobic baffled reactor (ABR) fed with low-strength domestic sewage[J]. Front. Environ. Sci. Eng., 2015, 9(2): 352-364.
[15] Xuan LIU,Zifu LI,Eric BOSC,Heinz-Peter MANG. Assessment of metals in dry-toilet collected matters from suburban areas of Ulaanbaatar, Mongolia, using biosolids quality guidelines and potential ecological risk index[J]. Front.Environ.Sci.Eng., 2014, 8(5): 710-718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed