|
|
Ecotoxicity assessment of soil irrigated with domestic wastewater using different extractions |
Wenyan LIANG( ),Lili SUI,Yuan ZHAO,Feizhen LI,Lijun LIU,Di XIE |
College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China |
|
|
Abstract The toxicity of soil irrigated with treated domestic wastewater (site A) and untreated gray wastewater (site B) were investigated. Soil extracts were prepared using distilled water, acid solvent (0.1 mol·L-1 HCl), and organic solvent (acetone:petroleum ether:cyclohexane= 1:1:1) to understand the type of pollutants responsible for the ecotoxicity associated with wastewater irrigation. The soil toxicity was assessed using a luminescence inhibition assay with Vibrio fischeri for acute toxicity, a micronucleus assay with Vicia faba root tips and a single cell gel electrophoresis assay of mice lymphocytes for genotoxicity. The physicochemical properties and the heavy metal (HM) contents of the irrigated soil were also analyzed. The results indicated that the wastewater irrigation at site A had no effects on the soil properties. With the exception of Pb, Zn, Fe, and Mn, the accumulation of HMs (Cu, Ni, and Cr) occurred. However, the irrigation at site A did not result in obvious acute toxicity or genotoxicity in the soil. The soil properties changed greatly, and HMs (Cu, Ni, and Cr) accumulated in site B. There were significant increases in the acute toxic and genotoxic effects in the soils from site B. The ecotoxicity in site B came primarily from organic-extractable pollutants.
|
Keywords
ecotoxicology
domestic wastewater
soil irrigation
risk assessment
organic extraction
|
Corresponding Author(s):
Wenyan LIANG
|
Online First Date: 16 September 2014
Issue Date: 25 June 2015
|
|
1 |
Castro E, Ma?as M P, Heras J D L. Effects of wastewater irrigation on soil properties and turfgrass growth. Water Science & Technology, 2011, 63(8): 1678–1688
https://doi.org/10.2166/wst.2011.335
pmid: 21866768
|
2 |
Abdu N, Abdulkadir A, Agbenin J O, Buerkert A. Vertical distribution of heavy metals in wastewater irrigated vegetable garden soils of three West African cities. Nutrient Cycling in Agroecosystems, 2011, 89(3): 387–397
https://doi.org/10.1007/s10705-010-9403-3
|
3 |
Gibson R, Durán-álvarez J C, Estrada K L, Chávez A, Jiménez Cisneros B. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 2010, 81(11): 1437–1445
https://doi.org/10.1016/j.chemosphere.2010.09.006
pmid: 20933253
|
4 |
Zeng L, Wang T, Han W, Yuan B, Liu Q, Wang Y, Jiang G. Spatial and vertical distribution of short chain chlorinated paraffins in soils from wastewater irrigated farmlands. Environmental Science & Technology, 2011, 45(6): 2100–2106
https://doi.org/10.1021/es103740v
pmid: 21319735
|
5 |
Tarchouna L G, Merdy P, Raynaud M, Pfeifer H R, Lucas Y. Effects of long-term irrigation with treated wastewater. Part I: Evolution of soil physico-chemical properties. Applied Geochemistry, 2010, 25(11): 1703–1710
https://doi.org/10.1016/j.apgeochem.2010.08.018
|
6 |
Aleem A, Malik A. Genotoxic hazards of long-term application of wastewater on agricultural soil. Mutation Research, 2003, 538(1–2): 145–154
https://doi.org/10.1016/S1383-5718(03)00110-4
pmid: 12834763
|
7 |
Song Y F, Gong P, Wilke B M, Zhang W, Song X Y, Sun T H, Ackland M L. Genotoxicity assessment of soils from wastewater irrigation areas and bioremediation sites using the Vicia faba root tip micronucleus assay. Journal of Environmental Monitoring, 2007, 9(2): 182–186
https://doi.org/10.1039/b614246j
pmid: 17285161
|
8 |
Yu G, Xiao R, Wang D, Zhou J, Wang Z. Assessing the ecological risk of soil irrigated with wastewater using in vitro cell bioassays. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(14): 1618–1627
https://doi.org/10.1080/10934520802329901
pmid: 18988099
|
9 |
Song Y F, Wilke B M, Song X Y, Gong P, Zhou Q X, Yang G F. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation. Chemosphere, 2006, 65(10): 1859–1868
https://doi.org/10.1016/j.chemosphere.2006.03.076
pmid: 16707147
|
10 |
Qiao M, Chen Y, Wang C X, Wang Z, Zhu Y G. DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters. Environmental Pollution, 2007, 148(1): 141–147
https://doi.org/10.1016/j.envpol.2006.10.033
pmid: 17175076
|
11 |
Courchesne F, Kruyts N, Legrand P. Labile zinc concentration and free copper ion activity in the rhizosphere of forest soils. Environmental Toxicology and Chemistry, 2006, 25(3): 635–642
https://doi.org/10.1897/04-593R.1
pmid: 16566146
|
12 |
Lagomarsino A, Mench M, Marabottini R, Pignataro A, Grego S, Renella G, Stazi S R. Copper distribution and hydrolase activities in a contaminated soil amended with dolomitic limestone and compost. Ecotoxicology and Environmental Safety, 2011, 74(7): 2013–2019
https://doi.org/10.1016/j.ecoenv.2011.06.013
pmid: 21798598
|
13 |
Cabrera G L, Rodriguez D M G. Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mutation Research, 1999, 426(2): 211–214
https://doi.org/10.1016/S0027-5107(99)00070-6
pmid: 10350600
|
14 |
Ehrlichmann H, Dott W, Eisentraeger A. Assessment of the water-extractable genotoxic potential of soil samples from contaminated sites. Ecotoxicology and Environmental Safety, 2000, 46(1): 73–80
https://doi.org/10.1006/eesa.1999.1875
pmid: 10805996
|
15 |
China Environmental Protection Bureau. Standard Methods for Examination of Water and Wastewater. 4th ed. Beijing: Chinese Environmental Science Press, 2004 (in Chinese)
|
16 |
Rusjan D, Strli? M, Pucko D, Koro?ec-Koruza Z. Copper accumulation regarding the soil characteristics in Sub-Mediterranean vine yards of Slovenia. Geoderma, 2007, 141(1–2): 111–118
https://doi.org/10.1016/j.geoderma.2007.05.007
|
17 |
Liang W, Chen L, Sui L, Yu J, Wang L, Shi H. Assessment of detoxification of microcystin extracts using electrochemical oxidation. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2011, 46(10): 1102–1112
https://doi.org/10.1080/10934529.2011.590721
pmid: 21806454
|
18 |
Majer B J, Grummt T, Uhl M, Knasmüller S. Use of plant bioassays for the detection of genotoxins in the aquatic environment. Acta Hydrochimica et Hydrobiologica, 2005, 33(1): 45–55
https://doi.org/10.1002/aheh.200300557
|
19 |
Marcato-Romain C E, Guiresse M, Cecchi M, Cotelle S, Pinelli E. New direct contact approach to evaluate soil genotoxicity using the Vicia faba micronucleus test. Chemosphere, 2009, 77(3): 345–350
https://doi.org/10.1016/j.chemosphere.2009.07.016
pmid: 19729185
|
20 |
Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gó?d? S, Koza Z, Wojcik A. A cross-platform public domain PC image-analysis program for the comet assay. Mutation Research, 2003, 534(1–2): 15–20
https://doi.org/10.1016/S1383-5718(02)00251-6
pmid: 12504751
|
21 |
Xu J, Wu L, Chang A C, Zhang Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: a preliminary assessment. Journal of Hazardous Materials, 2010, 183(1–3): 780–786
https://doi.org/10.1016/j.jhazmat.2010.07.094
pmid: 20719431
|
22 |
Yao H, Zhang S, Xue X, Yang J, Hu K, Yu X. Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China. Frontiers of Environmental Science & Engineering, 2013, 7(2): 273–280
https://doi.org/10.1007/s11783-013-0497-0
|
23 |
Singh A, Sharma R K, Agrawal M, Marshall F M. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Tropical Ecology, 2010, 51(2S): 375–387
|
24 |
Duan R, Fedler C B, Sheppard C D. Field study of salt balance of a land application system. Water, Air, & Soil Pollution, 2011, 215(1–4): 43–54
https://doi.org/10.1007/s11270-010-0455-4
|
25 |
Fonseca A, Herpin U, Paula A M, Victória R L, Melfi A J. Agricultural use of treated sewage effluents: agronomic and environmental implications and perspectives for Brazil. Scientia Agricola, 2007, 64(2): 194–209
https://doi.org/10.1590/S0103-90162007000200014
|
26 |
Girotti S, Ferri E N, Fumo M G, Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 2008, 608(1): 2–29
https://doi.org/10.1016/j.aca.2007.12.008
pmid: 18206990
|
27 |
Acheson C M, Zhou Q, Shan Y, Sayles G D, Kupferle M J. Comparing the solid phase and saline extract Microtox assays for two polycyclic aromatic hydrocarbon-contaminated soils. Environmental Toxicology and Chemistry, 2004, 23(2): 245–251
https://doi.org/10.1897/02-618
pmid: 14982368
|
28 |
Shen K, Shen C, Lu Y, Tang X, Zhang C, Chen X, Shi J, Lin Q, Chen Y. Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biological Research, 2009, 42(2): 183–187
https://doi.org/10.4067/S0716-97602009000200006
pmid: 19746263
|
29 |
Wang L J, Liu S S, Yuan J, Liu H L. Remarkable hormesis induced by 1-ethyl-3-methyl imidazolium tetrafluoroborate on Vibrio qinghaiensis sp.-Q67. Chemosphere, 2011, 84(10): 1440–1445
https://doi.org/10.1016/j.chemosphere.2011.04.049
pmid: 21561641
|
30 |
Frische T, H?per H. Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils. Chemosphere, 2003, 50(3): 415–427
https://doi.org/10.1016/S0045-6535(02)00603-3
pmid: 12656263
|
31 |
Niemi R M, Heiskanen I, Ahtiainen J H, Rahkonen A, M?ntykoski K, Welling L, Laitinen P, Ruuttunen P. Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Applied Soil Ecology, 2009, 41(3): 293–304
https://doi.org/10.1016/j.apsoil.2008.12.002
|
32 |
Tang J, Wang M, Wang F, Sun Q, Zhou Q. Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences-China, 2011, 23(5): 845–851
https://doi.org/10.1016/S1001-0742(10)60517-7
pmid: 21790059
|
33 |
Chen Y, Wang C, Wang Z, Huang S. Assessment of the contamination and genotoxicity of soil irrigated with wastewater. Plant and Soil, 2004, 261(1–2): 189–196
https://doi.org/10.1023/B:PLSO.0000035565.65775.3c
|
34 |
Lin D, Zhou Q, Xie X, Liu Y. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere, 2010, 81(10): 1328–1333
https://doi.org/10.1016/j.chemosphere.2010.08.027
pmid: 20825966
|
35 |
Zhu J, Zhao Z Y, Lu Y T. Evaluation of genotoxicity of combined soil pollution by cadmium and phenanthrene on earthworm. Journal of Environmental Sciences-China, 2006, 18(6): 1210–1215
https://doi.org/10.1016/S1001-0742(06)60064-8
pmid: 17294967
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|