Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (2) : 21    https://doi.org/10.1007/s11783-019-1113-8
RESEARCH ARTICLE
Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature
Yuzhou Deng1,2, Shengpan Peng1,2, Haidi Liu1,3, Shuangde Li1,3, Yunfa Chen1,3()
1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
 Download: PDF(1622 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Mechanism of DCM disproportionation over mesoporous TiO2 was studied.

• DCM was completely eliminated at 350℃ under 1 vol.% humidity.

• Anatase (001) was the key for disproportionation.

• A competitive oxidation route co-existed with disproportionation.

• Disproportionation was favored at low temperature.

Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.

Keywords Dichloromethane      Disproportionation      Mechanism      Anatase (001)      Water dissociation     
Corresponding Author(s): Yunfa Chen   
Issue Date: 08 April 2019
 Cite this article:   
Yuzhou Deng,Shengpan Peng,Haidi Liu, et al. Mechanism of dichloromethane disproportionation over mesoporous TiO2 under low temperature[J]. Front. Environ. Sci. Eng., 2019, 13(2): 21.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1113-8
https://academic.hep.com.cn/fese/EN/Y2019/V13/I2/21
Fig.1  Conversion of DCM (a), selectivity of CO (b open), CO2 (b solid) and CH3Cl (c). Reaction conditions: 1000 ppm DCM, 1 vol.% H2O, WHSV= 60000 mL/(g·h).
Fig.2  Concentrations as a function of time-on-stream over T1 catalyst. Step A: 1000 ppm DCM, 20% O2, N2 balanced; Step B: cut off DCM feed, 20% O2, N2 balanced; Step C: 1000 ppm DCM, 20% O2, N2 balanced; Step D: 1000 ppm DCM, 1% H2O, 20% O2, N2 balanced; Step E: 1000 ppm DCM, 0.1% H2O, 20% O2, N2 balanced. All the steps were carried out at 300℃ steady, WHSV= 60000 mL/(g·h).
Fig.3  In situ IR patterns of T1 under different temperatures. Gas feed: 100 mL/min 1000 ppm DCM, 1% H2O. (a) Global view, (b) C-H stretching region.
Fig.4  In situ IR spectrum of continuous flow of feed on T1 at 250°C, feed flow was 100 mL/min. A: 1000 ppm DCM, 20% O2, N2 balanced, 0.4 vol.% H2O. B: cut off DCM feed. C: elevated to 350℃ for 1 h and cool down to 250°C. D: restore DCM feed.
Wavenumber (cm1) Description Ref.
3864 n(OH) Primet et al. (1971); Maira et al. (2001)
3250 n(H,OH), molecular H2O coordinated with Ti4+ Maira et al. (2001)
2955 nas(CH3) van den Brink et al. (1998)
2935 nas(CH2) van den Brink et al. (1998)
2886 ns(CH3) van den Brink et al. (1998)
2865 n(CH) of formate species van den Brink et al. (1998)
2835 ns(CH2) van den Brink et al. (1998)
2738 n(CH), Fermi resonance of overtone of d(H-C) van den Brink et al. (1998)
1560 nas(COO), monodentate Greenler (1962); van den Brink et al. (1998); Maupin et al., (2012)
1540 nas(COO), bridge-dentate Kozlov et al. (2000)
1396 b(CH) of HCOO in-plane bending Greenler (1962); van den Brink et al. (1998); Maupin et al. (2012)
1373 ns(COO), bridge-dentate Greenler (1962); van den Brink et al. (1998); Maupin et al., (2012)
1360 ns(COO), monodentate Greenler (1962); van den Brink et al. (1998); Maupin et al. (2012)
Tab.1  Assignment of IR adsorption peaks
Catalyst Phase Specific Area (m2/g)a) Pore volume (cm3/g)b) Average pore diameter (nm)b) T50 (℃)
T1 Anatase+ Rutile 105.0 0.197 3.8 280
T2 Anatase 84.5 0.435 14.0 305
T3 Rutile 35.1 0.213 20.1 >400
Tab.2  Texture properties of the catalysts
Fig.5  XRD patterns of three types of TiO2.
Fig.6  TEM images of T1 (a), (b), T2 (c), T3 (d).
Fig.7  Adsorption and desorption isotherms, pore distributions of T1, T2 and T3.
Fig.8  Scheme 1 Two adsorption modes of DCM over TiO2 (a), disproportionation route (b), oxidation route (c), recovery of TiO2 (d)
Fig.9  Scheme 2 Mechanism of DCM disproportionation over TiO2
1 AAranzabal, M Romero-Sáez, UElizundia, J RGonzález-Velasco, J AGonzález-Marcos (2016). The effect of deactivation of h-zeolites on product selectivity in the oxidation of chlorinated VOCs (trichloroethylene). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 91(2): 318–326
2 SCao, M Shi, HWang, FYu, X Weng, YLiu, ZWu (2016a). A two-stage Ce/TiO2–Cu/CeO2 catalyst with separated catalytic functions for deep catalytic combustion of CH2Cl2. Chemical Engineering Journal, 290: 147–153
3 SCao, H Wang, FYu, MShi, S Chen, XWeng, YLiu, Z Wu (2016b). Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2. Journal of Colloid and Interface Science, 463: 233–241
4 LChen, B Yao, YCao, KFan (2007). Synthesis of well-ordered mesoporous Titania with tunable phase content and high photoactivity. Journal of Physical Chemistry C, 111(32): 11849–11853
5 B TClausse, B Garrot, CCornier, CPaulin, M HSimonot-Grange, FBoutros (1998). Adsorption of chlorinated volatile organic compounds on hydrophobic faujasite: Correlation between the thermodynamic and kinetic properties and the prediction of air cleaning. Microporous and Mesoporous Materials, 25(1): 169–177
6 CDai, Y Zhou, HPeng, SHuang, PQin, J Zhang, YYang, LLuo, X Zhang (2018). Current progress in remediation of chlorinated volatile organic compounds: A review. Journal of Industrial and Engineering Chemistry, 62: 106–119
7 QDai, S Bai, JWang, MLi, X Wang, GLu (2013a). The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene. Applied Catalysis B: Environmental, 142–143: 222–233
8 QDai, S Bai, XWang, GLu (2013b). Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: Mechanism study. Applied Catalysis B: Environmental, 129: 580–588
9 Q GDai, W Wang, X YWang, G ZLu (2017). Sandwich-structured CeO2@ZSM-5 hybrid composites for catalytic oxidation of 1,2-dichloroethane: An integrated solution to coking and chlorine poisoning deactivation. Applied Catalysis B: Environmental, 203: 31–42
10 Q GDai, X Y Wang, G Z Lu (2008). Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 81(3–4): 192–202
11 YDai, X Y Wang, D Li, Q GDai (2011). Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts. Journal of Hazardous Materials, 188(1–3): 132–139
12 MGallastegi-Villa, MRomero-Sáez, AAranzabal, J AGonzález-Marcos, J RGonzález-Velasco (2013). Strategies to enhance the stability of h-bea zeolite in the catalytic oxidation of Cl-VOCs: 1,2-dichloroethane. Catalysis Today, 213: 192–197
13 R GGreenler (1962). Infrared study of the adsorption of methanol and ethanol on aluminum oxide. Journal of Chemical Physics, 37(9): 2094–2100
14 LGuo, N Jiang, JLi, KShang, NLu, Y Wu (2018). Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor. Frontiers of Environmental Science & Engineering, 12(2): 15
15 BHuang, C Lei, CWei, GZeng (2014). Chlorinated volatile organic compounds (Cl-VOCs) in environment- sources, potential human health impacts, and current remediation technologies. Environment International, 71: 118–138
16 W KJo, K H Park (2004). Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Chemosphere, 57(7): 555–565
17 I SKang, J Y Xi, H Y Hu (2018). Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms. Frontiers of Environmental Science & Engineering, 12(3): 8
18 D VKozlov, E A Paukshtis, E N Savinov (2000). The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the ftir in situ method. Applied Catalysis B: Environmental, 24(1): L7–L12
19 CLong, P Liu, YLi, ALi, Q Zhang (2011). Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds. Environmental Science & Technology, 45(10): 4506–4512
20 A JMaira, J M Coronado, V Augugliaro, K LYeung, J CConesa, JSoria (2001). Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. Journal of Catalysis, 202(2): 413–420
21 D XMartínez Vargas, JRivera De la Rosa, C JLucio-Ortiz, AHernández-Ramirez, G AFlores-Escamilla, C DGarcia (2015). Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol–gel synthesis. Applied Catalysis B: Environmental, 179: 249–261
22 IMaupin, L Pinard, JMijoin, PMagnoux (2012). Bifunctional mechanism of dichloromethane oxidation over Pt/Al2O3: CH2Cl2 disproportionation over alumina and oxidation over platinum. Journal of Catalysis, 291: 104–109
23 JMei, S Zhao, WHuang, ZQu, N Yan (2016). Mn-promoted Co3O4/TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2). Journal of Hazardous Materials, 318: 1–8
24 LPinard, J Mijoin, PAyrault, CCanaff, PMagnoux (2004). On the mechanism of the catalytic destruction of dichloromethane over Pt zeolite catalysts. Applied Catalysis B: Environmental, 51(1): 1–8
25 LPinard, J Mijoin, PMagnoux, MGuisnet (2003). Oxidation of chlorinated hydrocarbons over Pt zeolite catalysts 1-mechanism of dichloromethane transformation over PtNaY catalysts. Journal of Catalysis, 215(2): 234–244
26 SPitkäaho, T Nevanperä, LMatejova, SOjala, R LKeiski (2013). Oxidation of dichloromethane over Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3–TiO2 and Al2O3–CeO2. Applied Catalysis B: Environmental, 138–139: 33–42
27 MPrimet, P Pichat, M VMathieu (1971). Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. Journal of Physical Chemistry, 75(9): 1216–1220
28 LRan, Z Qin, Z YWang, X YWang, Q GDai (2013). Catalytic decomposition of CH2Cl2 over supported Ru catalysts. Catalysis Communications, 37: 5–8
29 ZShi, P Yang, FTao, RZhou (2016). New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chemical Engineering Journal, 295: 99–108
30 GSinquin, C Petit, SLibs, J PHindermann, AKiennemann (2000). Catalytic destruction of chlorinated C1 volatile organic compounds (CVOCs) reactivity, oxidation and hydrolysis mechanisms. Applied Catalysis B: Environmental, 27(2): 105–115
31 PSun, W Wang, XDai, XWeng, Z Wu (2016). Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Applied Catalysis B: Environmental, 198: 389–397
32 R Wvan den Brink, PMulder, RLouw, G Sinquin, CPetit, J PHindermann (1998). Catalytic oxidation of dichloromethane on g-Al2O3: A combined flow and infrared spectroscopic study. Journal of Catalysis, 180(2): 153–160
33 AVittadini, A Selloni, F PRotzinger, MGrätzel (1998). Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Physical Review Letters, 81(14): 2954–2957
34 JWang, X Liu, JZeng, TZhu (2016). Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts. Catalysis Communications, 76: 13–18
35 JWang, X Wang, XLiu, JZeng, Y Guo, TZhu (2015a). Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts. Journal of Molecular Catalysis A Chemical, 402: 1–9
36 JWang, X Wang, XLiu, TZhu, Y Guo, HQi (2015b). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catalysis Today, 241: 92–99
37 X YWang, Q Kang, DLi (2008). Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catalysis Communications, 9(13): 2158–2162
38 YWang, A P Jia, M F Luo, J Q Lu (2015c). Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation. Applied Catalysis B: Environmental, 165: 477–486
39 YXia, K Zhu, T CKaspar, YDu, B Birmingham, K TPark, ZZhang (2013). Atomic structure of the anatase TiO2(001) surface. Journal of Physical Chemistry Letters, 4(17): 2958–2963
40 H GYang, C H Sun, S Z Qiao, J Zou, GLiu, S CSmith, H MCheng, G QLu (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195): 638–641
41 PYang, Z Shi, SYang, RZhou (2015). High catalytic performances of CeO2–CrOx catalysts for chlorinated VOCs elimination. Chemical Engineering Science, 126: 361–369
42 PYang, S Yang, ZShi, FTao, X Guo, RZhou (2016). Accelerating effect of ZrO2 doping on catalytic performance and thermal stability of CeO2–CrOx mixed oxide for 1,2-dichloroethane elimination. Chemical Engineering Journal, 285: 544–553
43 PYang, S Zuo, RZhou (2017). Synergistic catalytic effect of (Ce,Cr)xO2 and HZSM-5 for elimination of chlorinated organic pollutants. Chemical Engineering Journal, 323: 160–170
44 L LZhang, S Y Liu, Z J Li, J Yao, G YWang (2014). Catalytic combustion of dichloromethane over Cr-13X and K-Cr-13X zeolites catalysts. Chemical Journal of Chinese Universities-Chinese, 35(4): 812–817
45 XZhang, Z Pei, XNing, HLu, H Huang (2015). Catalytic low-temperature combustion of dichloromethane over V–Ni/TiO2 catalyst. RSC Advances, 5(96): 79192–79199
46 G MZuo, Z X Cheng, H Chen, G WLi, TMiao (2006). Study on photocatalytic degradation of several volatile organic compounds. Journal of Hazardous Materials, 128(2): 158–163
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[3] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[4] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[5] Dongjie Shang, Jianfei Peng, Song Guo, Zhijun Wu, Min Hu. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China[J]. Front. Environ. Sci. Eng., 2021, 15(2): 34-.
[6] Huibin Guo, Ning Wang, Xiang Li. Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals[J]. Front. Environ. Sci. Eng., 2021, 15(2): 21-.
[7] Jinjin Fu, Quan Zhang, Baocheng Huang, Niansi Fan, Rencun Jin. A review on anammox process for the treatment of antibiotic-containing wastewater: Linking effects with corresponding mechanisms[J]. Front. Environ. Sci. Eng., 2021, 15(1): 17-.
[8] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[9] Sen Liu, Congren Yang, Wei Liu, Longsheng Yi, Wenqing Qin. A novel approach to preparing ultra-lightweight ceramsite with a large amount of fly ash[J]. Front. Environ. Sci. Eng., 2020, 14(4): 62-.
[10] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[11] Siqi Li, Min Zheng, Shuang Wu, Yu Xue, Yanchen Liu, Chengwen Wang, Xia Huang. The impact of ultrasonic treatment on activity of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge[J]. Front. Environ. Sci. Eng., 2019, 13(6): 82-.
[12] Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review[J]. Front. Environ. Sci. Eng., 2019, 13(6): 89-.
[13] Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(2): 18-.
[14] Jianzhang Sun, Baoyu Gao, Yuanxia Luo, Moxi Xue, Xing Xu, Qinyan Yue, Yan Wang. Application and mechanism of polysaccharide extracted from Enteromorpha to remove nano-ZnO and humic acid in coagulation process[J]. Front. Environ. Sci. Eng., 2018, 12(3): 11-.
[15] Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie. Phenolic compounds removal by wet air oxidation based processes[J]. Front. Environ. Sci. Eng., 2018, 12(1): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed