Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (4) : 59    https://doi.org/10.1007/s11783-020-1351-9
RESEARCH ARTICLE
Treating wastewater under zero waste principle using wetland mesocosms
Safaa M. Ezzat(), Mohammed T. Mohammed T.
Microbiology Dept., Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
 Download: PDF(1346 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Smart wetland was designed to treat wastewater according to zero waste principle.

• The system included a dynamic roughing filter, Cyperus papyrus (L.) and zeolite.

• It removed 98.8 and 99.8% of chemical and bacterial pollutants in 3 days.

• The effluent reused to irrigate a landscape and the sludge recycled as fertilizer.

• The plant biomass is a profitable resource for antibacterial and antioxidants.

The present investigation demonstrates the synergistic action of using a sedimentation unit together with Cyperus papyrus (L.) wetland enriched with zeolite mineral in one-year round experiment for treating wastewater. The system was designed to support a horizontal surface flow pattern and showed satisfactory removal efficiencies for both physicochemical and bacteriological contaminants within 3 days of residence time. The removal efficiencies ranged between 76.3% and 98.8% for total suspended solids, turbidity, iron, biological oxygen demand, and ammonia. The bacterial indicators (total and fecal coliforms, as well as fecal streptococci) and the potential pathogens (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) showed removal efficiencies ranged between 96.9% and 99.8%. We expect the system to offer a smart management for every component according to zero waste principle. The treated effluent was reused to irrigate the landscape of pilot area, and the excess sludge was recycled as fertilizer and soil conditioner. The zeolite mineral did not require regeneration for almost 36 weeks of operation, and enhanced the density of shoots (14.11%) and the height of shoots (15.88%). The harvested plant biomass could be a profitable resource for potent antibacterial and antioxidant bioactive compounds. This could certainly offset part of the operation and maintenance costs and optimize the system implementation feasibility. Although the experiment was designed under local conditions, its results could provide insights to upgrade and optimize the performance of other analogous large-scale constructed wetlands.

Keywords Wastewater      dynamic roughing filter      Cyperus papyrus (L.)      zeolite      zero waste     
Corresponding Author(s): Safaa M. Ezzat   
Issue Date: 21 October 2020
 Cite this article:   
Safaa M. Ezzat,Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1351-9
https://academic.hep.com.cn/fese/EN/Y2021/V15/I4/59
Fig.1  Schematic diagram for wetland mesocosm setup
Physcio-chemical parameters Units Mean±SD
Temp °C 23.4±0.638
pH 7.62±0.287
EC dS/m 0.628±0.283
TSS mg/L 47.8±0.248
Turbidity NTU 39±0.179
CO3 mg/L ND
HCO3 mg/L 146±0.814
NH3 mg/L 16.22±0.094
BOD mg/L 37.7±0.182
Major anions
Cl? mg/L 112.4±2.801
SO42? mg/L 24.5±0.737
PO43? mg/L 0.18±0.125
Major cations
Ca2+ mg/L 44.11±2.461
Mg2+ mg/L 17.3±3.580
Na+ mg/L 115±5.342
K+ mg/L 15±2.681
Trace metals
Cd mg/L 0.001±0.005
Cr mg/L 0.001±0.003
Cu mg/L 0.032±0.056
Fe mg/L 1.048±0.012
Ni mg/L 0.024±0.044
Pb mg/L ND
Zn mg/L 0.041±0.087
Bacteriological parameters
Total coliforms cfu/100mL 38x104±0.122
Fecal coliforms cfu/100mL 15x104±0.185
Fecal streptococci cfu/100mL 30x103±0.159
Escherichia coli cfu/100mL 42X103±1.501
Pseudomonas aeruginosa cfu/100mL 227±0.274
Staphylococcus aureus cfu/100mL 15X102±0.325
Tab.1  Physico-chemical and bacteriological characteristics of wastewater before treatment
Fig.2  Removal efficiencies of physicochemical pollutants versus seasonal variation and method of treatment. DRF: dynamic roughing filter; C.P: Cyperus papyrus (L.); columns with different letters indicate significant differences at p<0.05.
Fig.3  Removal efficiencies of bacterial pollutants versus seasonal variation and method of treatment. DRF: dynamic roughing filter; C.P: Cyperus papyrus (L.); columns with different letters indicate significant differences at p<0.05.
Properties Value Properties Value
Bulk density (gm/cm3) 1.83 Apparent density (gm/cm3) 2.377
Overall surface area (m2/gm) 89.82 Appearance (color) Grayish- white
Porosity (%) 27.80 Humidity (%) 6.75
Total pore area (m2/gm) 35.836 L.O.I (%)* 13.6
Average pore diameter (um) 0.0181 Hardness 4
Solubility (%) 7.38 Grain Size ? 6 mm
Swelling index 2.52 pH 6.8
Tab.2  (a) Physical properties of zeolite
Elements Percentage (%)
Major elements SiO2 62.22
Al2O3 11.096
Na2O 0.78
MgO 0.599
CaO 3.583
Fe2O3 4.033
K2O 3.266
TiO2 0.339
ZrO2 0.112
Trace elements Cl 0.025
BaO 0.085
P2O5 0.033
ZnO 0.025
SrO 0.047
PbO 0.002
MnO 0.120
SO3 0.035
Tab.3  Table2(b) Chemical properties of zeolite
Fig.4  XRD pattern of natural zeolite.
Fig.5  Variation in (A) shoot density and (B) shoot height of Cyperus papyrus (L.) in zeolite free and zeolite amended mesocosms. Columns with different letters indicate significant differences at p<0.05.
Concentrations(mg/mL) Zones of inhibition(mm)
Escherichia coli Pseudomonas aeruginosa Staphylococcus aureus
Min Max Mean Min Max Mean Min Max Mean
100 0.0 0.0 0.0±0.0 0.0 0.0 0.0±0.0 0.0 0.0 0.0±0.0
200 0.0 0.0 0.0±0.0 0.0 0.0 0.0±0.0 11.0 13.0 12.0±1.0
300 12.0 13.0 12.3±0.57 0.0 0.0 0.0±0.0 13.0 14.0 13.3±0.57
400 17.0 19.0 18.3±1.15 16.0 18.0 17.0±1.0 17.0 19.0 18.3±1.15
500 19.0 21.0 20.3±1.15 17.0 19.0 18.0±1.0 21.0 22.0 21.3±0.57
Negative control a 0.0 0.0 0.0±0.0 0.0 0.0 0.0±0.0 0.0 0.0 0.0±0.0
Positive control b 22.0 23.0 22.3±0.57 18.0 20.0 18.6±1.15 23.0 24.0 23.3±0.57
Tab.4  Efficiency of root extracts from Cyperus papyrus (L.) at different concentrations against bacteria
Peak
No.
Retention time
(min)
Compound name Area
(%)
Chemical formula Molecular weight
(g/mol)
1 3.632 4-hydroxy-4-methyl-2-pentanone 23.39 C6H12O2 116.16
2 4.322 1,4-Benzenediol, dimethanesulfonate 5.15 C8H10O6S2 266.29
3 4.778 Arsenous acid, tris (trimethylsilyl) ester 1.57 C9H27AsO3Si3 342.49
4 5.126 Bis(trimethylsilyl) diethyl silicate 4.77 C10H28Si3 280.58
5 5.297 2,4,6-cycloheptatrien-1-one, 3-hydroxy- 6.25 C7H6O2 122.12
6 5.551 Hexamethylcyclotrisiloxane 3.26 C6H18O3Si3 222.46
Tab.5  Phytochemical compounds detected by GC-MS analysis in root extracts from Cyperus papyrus (L.)
Fig.6  GC-MS chromatogram of aqueous root extract from Cyperus papyrus (L.).
1 G Al-Samarrai, H Singh, M Syarhabil (2012). Evaluating eco-friendly botanicals (natural plant extracts) as alternatives to synthetic fungicides. Annals of Agricultural and Environmental Medicine, 19(4): 673–676
2 H J Al-Tameme, I H Hameed, S A Idan, M Y Hadi (2015). Biochemical analysis of Origanum vulgare seeds by Fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy, 7(9): 221–237
https://doi.org/10.5897/JPP2015.0362
3 P Ambrozova, J Kynicky, T Urubek, V D Nguyen (2017). Synthesis and modification of clinoptilolite. Molecules (Basel, Switzerland), 22(7): 1107–1119
https://doi.org/10.3390/molecules22071107
4 APHA (2012). Standard Methods for the Examination of Water and Wastewater. Vol. 22, 22nd ed. Washington, DC: American Public Health Association
5 S Arden, X Ma (2018). Constructed wetlands for grey water recycle and reuse: A review. Science of the Total Environment, 630: 587–599
https://doi.org/10.1016/j.scitotenv.2018.02.218
6 B Avery, C Bascomb (1982). Soil Survey Laboratory Methods. Harpenden (UK): Soil Survey of England and Wales
7 R S Ayers, D W Westcot (1985). Water Quality for Agriculture. Vol. 29. Rome. Food and Agriculture Organization of United Nations
8 P C Cairo, J M Armas, P T Artiles, B D Martin, R J Carrazana, O R Lopez (2017). Effects of zeolite and organic fertilizers on soil quality and yield of sugarcane. Australian Journal of Crop Science, 11(06): 733–738
https://doi.org/10.21475/ajcs.17.11.06.p501
9 M Civilini (2009). Identification and characterization of bacteria isolated under selective pressure of volatile organic compounds. Journal of Environmental Biology, 30: 99–105
10 R B Devi, T N Barkath, P Vijayaraghavan, T S Rejiniemon (2018). GC-MS analysis of phytochemical from Psidium guajava Linn leaf extract and their in vitro antimicrobial activities. International Journal of Pharma and Bio Sciences, 8(1): 583–589
11 A B Falowo, V Muchenje, A Hugo, O A Aiyegoro, P O Fayemi (2017). Antioxidant activities of Moringa oleifera L. and Bidens pilosa L. leaf extracts and their effects on oxidative stability of ground raw beef during refrigeration storage. CYTA: Journal of Food, 15(2): 249–256
https://doi.org/10.1080/19476337.2016.1243587
12 L W Foo, E Salleh, S N Hana (2017). Green extraction of antimicrobial bioactive compound from piper betle leaves: Probe type Ultrasound-assisted extraction vs supercritical carbon dioxide extraction. Chemical Engineering Transactions, 56: 109–114
13 N Gherraf, A Zellagui, A Kabouche, M Lahouel, R Salhi, S Rhouati (2017). Chemical constituents and antimicrobial activity of essential oils of Ammodaucus leucotricus. Arabian Journal of Chemistry, 10(52): S2476–S2478
https://doi.org/10.1016/j.arabjc.2013.09.013
14 U Ghimire, H Nandimandalam, E Martinez‐Guerra, V G Gude (2019). Wetlands for wastewater treatment. Water Environment Research, 91(10): 1378–1389
https://doi.org/10.1002/wer.1232
15 F Z Haichar, C Santaella, T Heulin, W Achouak (2014). Root exudates mediated interactions belowground. Soil Biology & Biochemistry, 77: 69–80
https://doi.org/10.1016/j.soilbio.2014.06.017
16 H D Hassanein, N M Nazif, A A Shahat, F M Hammouda, E S A Aboutable, M A Saleh (2014). Chemical diversity of essential oils from Cyperusarticulatus, Cyperus esculentus and Cyperus papyrus. Journal of Essential Oil Bearing Plants, 17(2): 251–264
https://doi.org/10.1080/0972060X.2013.813288
17 A Hedström (2001). Ion exchange of ammonium in zeolites: A literature review. Journal of Environmental Engineering, 127(8): 673-681
https://doi.org/10.1061/(ASCE)0733-9372(2001)127:8(673)
18 K Kadir, K L Nelson (2014). Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water. Water Research, 50: 307–317
https://doi.org/10.1016/j.watres.2013.10.046
19 R H Kadlec, R L Knight (1996). Treatment Wetlands. Boca. Raton: Lewis-CRC Press
20 F Kansiime, M J Saunders, A S Loiselle (2007). Functioning and dynamics of wetland vegetation of Lake Victoria: An overview. Wetlands Ecology and Management, 15(6): 443–451
https://doi.org/10.1007/s11273-007-9043-9
21 M Kaushal, M D Patil, S P Wani (2018). Potency of constructed wetlands for deportation of pathogens index from rural, urban and industrial wastewater. International Journal of Environmental Science and Technology, 15(3): 637–648
https://doi.org/10.1007/s13762-017-1423-y
22 J Kyambadde, F Kansiime, L Gumaelius, G Dalhammar (2004). A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Resources, 38: 475–485
23 L Lamastra, N A Suciu, M Trevisan (2018). Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chemical and Biological Technologies in Agriculture, 5(1): 10-15
https://doi.org/10.1186/s40538-018-0122-3
24 C Leal, A Val del Río, D P Mesquita, A L Amaral, P M L Castro, E C Ferreira (2020). Sludge volume index and suspended solids estimation of mature aerobic granular sludge by quantitative image analysis and chemometric tools. Separation and Purification Technology, 234: 116049
https://doi.org/10.1016/j.seppur.2019.116049
25 R Levesque (2007). SPSS Programming and Data Management. A Guide for SPSS and SAS Users, 4th ed, Chicago (IL): SPSS, 522 P
26 S Lu, L Pei, X Bai. (2015). Study on method of domestic wastewater treatment through new-type multi-layer artificial wetland. International Journal of Hydrogen Energy, 40(34): 11207–11214
https://doi.org/10.1016/j.ijhydene.2015.05.165
27 R Malekian, J Abedi-Koupai, S Eslamian (2011). Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials, 185(2–3): 970–976
https://doi.org/10.1016/j.jhazmat.2010.09.114
28 G Maltais-Landry, F Chazarenc, Y Comeau, S Troesch, J Brisson (2007). Effects of artificial aeration, macrophyte species, and loading rate on removal efficiency in constructed wetland mesocosms treating fish farm wastewater. Journal of Environmental Engineering and Science, 6(4): 409–414
https://doi.org/10.1139/s06-069
29 J L Marín-Muñiz, M C García-González, L C Ruelas-Monjardín, P Moreno-Casasola (2018). Influence of different porous media and ornamental vegetation on wastewater pollutant removal in vertical subsurface flow wetland microcosms. Environmental Engineering Science, 35(2): 88–94
https://doi.org/10.1089/ees.2017.0061
30 J McHenry, A Werker (2005). In-situ monitoring of microbial biomass in wetland mesocosms. Water Science and Technology, 51(9): 233–241
https://doi.org/10.2166/wst.2005.0326
31 B Mnaya, T Asaeda, Y Kiwango, E Ayubu (2007). Primary production in papyrus (Cyperus papyrus L.) of Rubondo Island, Lake Victoria, Tanzania. Wetlands Ecology and Management, 15(4): 269–275
https://doi.org/10.1007/s11273-006-9027-1
32 D Penduka, L Buwa, B Mayekiso, A K Basson, A I Okoh (2014). Identification of the anti Listerial constituents in partially purified column chromatography fractions of Garcinia kola seeds and their interactions with standard antibiotics. Evidence-Based Complementary and Alternative Medicine, 2014: 1–8
https://doi.org/10.1155/2014/850347
33 T Perbangkhem, C Polprasert (2010). Biomass production of papyrus (Cyperus papyrus) in constructed wetland treating low-strength domestic wastewater. Bioresource Technology, 101(2): 833–835
https://doi.org/10.1016/j.biortech.2009.08.062
34 C Perez, M Pauli, P Bazerque (1990). An antibiotic assay by agar well diffusion method. Acta Biologiae et Medicinae Experimentalis, 15: 113–115
35 E Polat, M Karaca, H Demir, A Onus (2004). Use of natural zeolite (Clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant Research, 12: 184–189
36 A Prakash, V Suneetha (2014). Punica granatum (Pomegranate) rind extract as a potent substitute for L-ascorbic acid with respect to the antioxidant activity. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(2): 597–603
37 C J Rhodes (2010). Properties and applications of zeolites. Science Progress, 93(3): 223–284
https://doi.org/10.3184/003685010X12800828155007
38 M Rivera-Garza, M T Olguín, I García-Sosa, D Alcántara, G Rodríguez-Fuentes (2000). Silver supported on natural Mexican zeolite as an antibacterial material. Microporous and Mesoporous Materials, 39(3): 431–444
https://doi.org/10.1016/S1387-1811(00)00217-1
39 Q Song, J Li, X Zeng (2015). Minimizing the increasing solid waste through zero waste strategy. Journal of Cleaner Production, 104: 199–210
https://doi.org/10.1016/j.jclepro.2014.08.027
40 S Susarla, V F Medina, C McCutcheon (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18(5): 647–658
https://doi.org/10.1016/S0925-8574(02)00026-5
41 A S Taha, M Z M Salem, W A A Abo Elgat, H M Ali, A A Hatamleh, E M Abdel-Salam (2019). Assessment of the impact of different treatments on the technological and antifungal properties of papyrus (Cyperus papyrus L.) Sheets. Materials (Basel), 12(4): 620-638
https://doi.org/10.3390/ma12040620
42 T Terer, L Triest, A Muthama Muasya (2012). Effects of harvesting Cyperus papyrus in undisturbed wetland, Lake Naivasha, Kenya. Hydrobiologia, 680(1): 135–148
https://doi.org/10.1007/s10750-011-0910-2
43 M T Timotewos, K Kassa, D Reddythota (2017). Selection of mesocosm to remove nutrients with constructed wetlands. Journal of Ecological Engineering, 18(4): 42–51
https://doi.org/10.12911/22998993/74397
44 M Trepel, L Palmeri (2002). Quantifying nitrogen retention in surface flow wetlands for environmental planning at the landscape scale. Ecological Engineering, 19(2): 127–140
https://doi.org/10.1016/S0925-8574(02)00038-1
45 M Turk, G Bayram, E Budakli, N Celik (2006). A study on effects of different mixtures of zeolite with soil rates on some yield parameters of Alfalfa (Medicago sativa L.). Journal of Agronomy, 5(1): 118–121
https://doi.org/10.3923/ja.2006.118.121
46 R Verma, S Suthar (2018). Performance assessment of horizontal and vertical surface flow constructed wetland system in wastewater treatment using multivariate principal component analysis. Ecological Engineering, 116: 121–126
https://doi.org/10.1016/j.ecoleng.2018.02.022
47 J Vymazal (2011). Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia, 674(1): 133–156
https://doi.org/10.1007/s10750-011-0738-9
48 S Wang, Y Peng (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1): 11–24
https://doi.org/10.1016/j.cej.2009.10.029
49 Y F Wang, F Lin, W Q Pang (2007). Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. Journal of Hazardous Materials, 142(1–2): 160–164
https://doi.org/10.1016/j.jhazmat.2006.07.074
50 WHO (2006). Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Geneva: World Health Organization
51 N Widiastuti, H Wu, M Ang, D Zhang (2008). The potential application of natural zeolite for greywater treatment. Desalination, 218(1–3): 271–280
https://doi.org/10.1016/j.desal.2007.02.022
52 Y Yang, Y Zhao, R Liu, D Morgan (2018). Development of various emerged substrates utilized in constructed wetlands. Bioresource Technology, 61: 441–452
53 S Zamora, J L Marín-Muñíz, C Nakase-Rodríguez, G Fernández-Lambert, L Sandoval (2019). Wastewater treatment by constructed wetland eco-technology: Influence of mineral and plastic materials as filter media and tropical ornamental plants. Water (Basel), 11(11): 2344–2355
https://doi.org/10.3390/w11112344
[1] Feng Hou, Ting Zhang, Yongzhen Peng, Xiaoxin Cao, Hongtao Pang, Yanqing Shao, Xianchun Lu, Ju Yuan, Xi Chen, Jin Zhang. Partial anammox achieved in full scale biofilm process for typical domestic wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(3): 33-.
[2] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[3] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[4] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[5] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[6] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[7] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[8] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[9] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[10] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[11] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[12] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[13] Zhenlian Qi, Shijie You, Ranbin Liu, C. Joon Chuah. Performance and mechanistic study on electrocoagulation process for municipal wastewater treatment based on horizontal bipolar electrodes[J]. Front. Environ. Sci. Eng., 2020, 14(3): 40-.
[14] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
[15] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed