Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (3) : 172-176    https://doi.org/10.1007/s11515-011-0910-7
COMMENTARY
The discovery of the fat-regulating phosphatidic acid phosphatase gene
George M. CARMAN()
Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, U.S.A.
 Download: PDF(158 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phosphatidic acid phosphatase is a fat-regulating enzyme that plays a major role in controlling the balance of phosphatidic acid (substrate) and diacylglycerol (product), which are lipid precursors used for the synthesis of membrane phospholipids and triacylglycerol. Phosphatidic acid is also a signaling molecule that triggers phospholipid synthesis gene expression, membrane expansion, secretion, and endocytosis. While this important enzyme has been known for several decades, its gene was only identified recently from yeast. This discovery showed the importance of phosphatidic acid phosphatase in lipid metabolism in yeast as well as in higher eukaryotes including humans.

Keywords phosphatidic acid phosphatase      yeast      lipin      phospholipid      triacylglycerol     
Corresponding Author(s): CARMAN George M.,Email:carman@aesop.rutgers.edu   
Issue Date: 01 June 2011
 Cite this article:   
George M. CARMAN. The discovery of the fat-regulating phosphatidic acid phosphatase gene[J]. Front Biol, 2011, 6(3): 172-176.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-0910-7
https://academic.hep.com.cn/fib/EN/Y2011/V6/I3/172
Fig.1  The PA phosphatase reaction and its roles in lipid metabolism. The reaction catalyzed by PA phosphatase (highlighted in yellow) is shown. The reaction product diacylglycerol (DAG) is used for the synthesis of triacylglycerol (TAG) and the synthesis of phosphatidylethanolamine (PE) or phosphatidylcholine (PC). The reaction substrate PA is used for the synthesis of phosphatidylinositol (PI) or phosphatidylglycerol (PG) via CDP-diacylglycerol (CDP-DAG). The substrate and product of the PA phosphatase reaction also play roles in lipid signaling.
Fig.1  The PA phosphatase reaction and its roles in lipid metabolism. The reaction catalyzed by PA phosphatase (highlighted in yellow) is shown. The reaction product diacylglycerol (DAG) is used for the synthesis of triacylglycerol (TAG) and the synthesis of phosphatidylethanolamine (PE) or phosphatidylcholine (PC). The reaction substrate PA is used for the synthesis of phosphatidylinositol (PI) or phosphatidylglycerol (PG) via CDP-diacylglycerol (CDP-DAG). The substrate and product of the PA phosphatase reaction also play roles in lipid signaling.
Fig.2  Domain structures of the yeast and human PAP enzymes. The diagram shows the positions of the conserved NLIP () and HAD-like () domains in yeast PAP and human lipin 1. These domains are conserved in lipin 2 and lipin 3 (not shown). A conserved glycine residue within the NLIP domain and conserved aspartate residues in the catalytic sequence DIDGT within the HAD-like domain are essential for PAP activity.
Fig.2  Domain structures of the yeast and human PAP enzymes. The diagram shows the positions of the conserved NLIP () and HAD-like () domains in yeast PAP and human lipin 1. These domains are conserved in lipin 2 and lipin 3 (not shown). A conserved glycine residue within the NLIP domain and conserved aspartate residues in the catalytic sequence DIDGT within the HAD-like domain are essential for PAP activity.
1 Carman G M, Han G S (2006). Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci , 31(12): 694–699
doi: 10.1016/j.tibs.2006.10.003 pmid:17079146
2 Carman G M, Han G S (2009). Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem , 284(5): 2593–2597
doi: 10.1074/jbc.R800059200 pmid:18812320
3 Carman G M, Henry S A (1999). Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res , 38(5-6): 361–399
doi: 10.1016/S0163-7827(99)00010-7 pmid:10793889
4 Carman G M, Henry S A (2007). Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem , 282(52): 37293–37297
doi: 10.1074/jbc.R700038200 pmid:17981800
5 Csaki L S, Reue K (2010). Lipins: multifunctional lipid metabolism proteins. Annu Rev Nutr , 30(1): 257–272
doi: 10.1146/annurev.nutr.012809.104729 pmid:20645851
6 Donkor J, Sariahmetoglu M, Dewald J, Brindley D N, Reue K (2007). Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem , 282(6): 3450–3457
doi: 10.1074/jbc.M610745200 pmid:17158099
7 Donkor J, Zhang P, Wong S, O’Loughlin L, Dewald J, Kok B P, Brindley D N, Reue K (2009). A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J Biol Chem , 284(43): 29968–29978
doi: 10.1074/jbc.M109.023663 pmid:19717560
8 Finck B N, Gropler M C, Chen Z, Leone T C, Croce M A, Harris T E, Lawrence J C Jr, Kelly D P (2006). Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab , 4(3): 199–210
doi: 10.1016/j.cmet.2006.08.005 pmid:16950137
9 Han G S, Carman G M (2010). Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms. J Biol Chem , 285(19): 14628–14638
doi: 10.1074/jbc.M110.117747 pmid:20231281
10 Han G S, Siniossoglou S, Carman G M (2007). The cellular functions of the yeast lipin homolog PAH1p are dependent on its phosphatidate phosphatase activity. J Biol Chem , 282(51): 37026–37035
doi: 10.1074/jbc.M705777200 pmid:17971454
11 Han G S, Wu W I, Carman G M (2006). The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem , 281(14): 9210–9218
doi: 10.1074/jbc.M600425200 pmid:16467296
12 Irie K, Takase M, Araki H, Oshima Y (1993). A gene, SMP2, involved in plasmid maintenance and respiration in Saccharomyces cerevisiae encodes a highly charged protein. Mol Gen Genet , 236(2-3): 283–288
doi: 10.1007/BF00277124 pmid:8437575
13 Koh Y K, Lee M Y, Kim J W, Kim M, Moon J S, Lee Y J, Ahn Y H, Kim K S (2008). Lipin1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2. J Biol Chem , 283(50): 34896–34906
doi: 10.1074/jbc.M804007200 pmid:18930917
14 Koonin E V, Tatusov R L (1994). Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol , 244(1): 125–132
doi: 10.1006/jmbi.1994.1711 pmid:7966317
15 Langner C A, Birkenmeier E H, Ben-Zeev O, Schotz M C, Sweet H O, Davisson M T, Gordon J I (1989). The fatty liver dystrophy (fld) mutation. A new mutant mouse with a developmental abnormality in triglyceride metabolism and associated tissue-specific defects in lipoprotein lipase and hepatic lipase activities. J Biol Chem , 264(14): 7994–8003
pmid:2722772
16 Langner C A, Birkenmeier E H, Roth K A, Bronson R T, Gordon J I (1991). Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J Biol Chem , 266(18): 11955–11964
pmid:2050689
17 Lin Y P, Carman G M (1989). Purification and characterization of phosphatidate phosphatase from Saccharomyces cerevisiae. J Biol Chem , 264(15): 8641–8645
pmid:2542283
18 Lin Y P, Carman G M (1990). Kinetic analysis of yeast phosphatidate phosphatase toward Triton X-100/phosphatidate mixed micelles. J Biol Chem , 265(1): 166–170
pmid:2152917
19 Loewen C J R, Gaspar M L, Jesch S A, Delon C, Ktistakis N T, Henry S A, Levine T P (2004). Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science , 304(5677): 1644–1647
doi: 10.1126/science.1096083 pmid:15192221
20 Madera M, Vogel C, Kummerfeld S K, Chothia C, Gough J (2004). The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res , 32(90001 Database issue): D235–D239
doi: 10.1093/nar/gkh117 pmid:14681402
21 Nadra K, de Preux Charles A S, Médard J J, Hendriks W T, Han G S, Grès S, Carman G M, Saulnier-Blache J S, Verheijen M H, Chrast R (2008). Phosphatidic acid mediates demyelination in Lpin1 mutant mice. Genes Dev , 22(12): 1647–1661
doi: 10.1101/gad.1638008 pmid:18559480
22 Péterfy M, Phan J, Reue K (2005). Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J Biol Chem , 280(38): 32883–32889
doi: 10.1074/jbc.M503885200 pmid:16049017
23 Péterfy M, Phan J, Xu P, Reue K (2001). Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet , 27(1): 121–124
doi: 10.1038/83685 pmid:11138012
24 Phan J, Reue K (2005). Lipin, a lipodystrophy and obesity gene. Cell Metab , 1(1): 73–83
doi: 10.1016/j.cmet.2004.12.002 pmid:16054046
25 Reue K, Brindley D N (2008). Thematic Review Series: Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res , 49(12): 2493–2503
doi: 10.1194/jlr.R800019-JLR200 pmid:18791037
26 Reue K, Donkor J (2007). Genetic factors in type 2 diabetes: all in the (lipin) family. Diabetes , 56(12): 2842–2843
doi: 10.2337/db07-1288 pmid:18042760
27 Reue K, Dwyer J R (2009). Lipin proteins and metabolic homeostasis. J Lipid Res , 50(Suppl): S109–S114
doi: 10.1194/jlr.R800052-JLR200 pmid:18941140
28 Reue K, Zhang P (2008). The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Lett , 582(1): 90–96
doi: 10.1016/j.febslet.2007.11.014 pmid:18023282
29 Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S (2005). The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J , 24(11): 1931–1941
doi: 10.1038/sj.emboj.7600672 pmid:15889145
30 Siniossoglou S (2009). Lipins, lipids and nuclear envelope structure. Traffic , 10(9): 1181–1187
doi: 10.1111/j.1600-0854.2009.00923.x pmid:19490535
31 Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E (1998). A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J , 17(22): 6449–6464
doi: 10.1093/emboj/17.22.6449 pmid:9822591
32 Smith S W, Weiss S B, Kennedy E P (1957). The enzymatic dephosphorylation of phosphatidic acids. J Biol Chem , 228(2): 915–922
pmid:13475370
33 Wu W I, Carman G M (1994). Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by nucleotides. J Biol Chem , 269(47): 29495–29501
pmid:7961932
34 Wu W I, Carman G M (1996). Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by phospholipids. Biochemistry , 35(12): 3790–3796
doi: 10.1021/bi952808f pmid:8620000
35 Wu W I, Lin Y P, Wang E, Merrill A H Jr, Carman G M (1993). Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases. J Biol Chem , 268(19): 13830–13837
pmid:8314751
[1] Sanjeeb Kumar Mandal, Nupur Ojha, Nilanjana Das. Process optimization of benzo[ghi]perylene biodegradation by yeast consortium in presence of ZnO nanoparticles and produced biosurfactant using Box-Behnken design[J]. Front. Biol., 2018, 13(6): 418-424.
[2] Mangala Lakshmi Ragavan, Nilanjana Das. Process optimization for microencapsulation of probiotic yeasts[J]. Front. Biol., 2018, 13(3): 197-207.
[3] Karim Mowla, Elham Rajaei, Mohammad Taha Jalali, Zeinab Deris Zayeri. Threatening biomarkers in lupus pregnancy: Biochemistry and genetic challenges[J]. Front. Biol., 2018, 13(1): 28-35.
[4] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[5] Felicia Tsang,Su-Ju Lin. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity[J]. Front. Biol., 2015, 10(4): 333-357.
[6] Anna R. SNAPP, Chaofu LU. Engineering industrial fatty acids in oilseeds[J]. Front Biol, 2013, 8(3): 323-332.
[7] Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT)[J]. Front Biol, 2011, 6(3): 177-182.
[8] Karlheinz GRILLITSCH, Günther DAUM. Triacylglycerol lipases of the yeast[J]. Front Biol, 2011, 6(3): 219-230.
[9] RUAN Songlin, MA Huasheng, WANG Shiheng, XIN Ya, QIAN Lihua, TONG Jianxing, WANG Jie. Advances in plant proteomics-key techniques of proteome[J]. Front. Biol., 2008, 3(3): 245-258.
[10] Wan Bingbing, Shi Yan, Huo Keke. An improved yeast two-hybrid approach for detection of interacting proteins[J]. Front. Biol., 2006, 1(2): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed