Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (3) : 233-245    https://doi.org/10.1007/s11515-012-1188-0
REVIEW
Assays for RNA synthesis and replication by the hepatitis C virus
C. Cheng KAO1(), Baochang FAN1, Sreedhar CHINNASWAMY2, Hui CAI1, C.T. RANJITH-KUMAR1, Jerome DEVAL3
1. Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; 2. National Institute of Biomedical Genomics (NIBMG), NSS, Kalyani, WB-741251, India; 3. Alios BioPharma, Inc., South San Francisco, CA 94080, USA
 Download: PDF( KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

At least six major genotypes of Hepatitis C virus (HCV) cause liver diseases worldwide. The efficacy rates with current standard of care are about 50% against genotype 1, the most prevalent strain in the United States, Europe and Japan. Therefore more effective pan-genotypic therapies are needed. HCV RNA replication provides a number of validated targets for virus-specific and potentially pan-genotypic inhibitors. In vitro assays capturing the different steps of RNA synthesis are needed not only to identify new inhibitors, but also to examine their mechanisms of action. This review attempts to provide a comprehensive summary of the biochemical, cell-based and animal model systems to assess HCV polymerase activity and HCV RNA replication that should be useful for both basic research and applied studies.

Keywords assay      RNA synthesis and replication      hepatitis C virus     
Corresponding Author(s): KAO C. Cheng,Email:ckao@indiana.edu   
Issue Date: 01 June 2012
 Cite this article:   
Sreedhar CHINNASWAMY,Hui CAI,C. Cheng KAO, et al. Assays for RNA synthesis and replication by the hepatitis C virus[J]. Front Biol, 2012, 7(3): 233-245.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1188-0
https://academic.hep.com.cn/fib/EN/Y2012/V7/I3/233
Fig.1  The organization of the HCV genome and the processing and functions of the ten mature HCV proteins. The HCV genome with the flanking non-translated regions (NTR) and the HCV-encoded structural and nonstructural proteins are shown in the upper diagram. The black box denotes the location of the internal ribosome entry sequence that facilitated cap-independent translation of the HCV polyprotein. Processing of the polyproteins by cellular proteases are denoted by triangles. The sites processed by the HCV-encodedNS2 and NS3 are shown with white and black arrows, respectively. A summary of the functions of the proteins is shown below the proteins.
Fig.2  A schematic for the infection process by HCV. The major steps in HCV infection are depicted and labeled. The nucleus is depicted with a blue oval and the endoplasmic reticulum shown with grey lines. The ribosome is translating the (+)-strand HCV genomic RNA (black line) is depicted by the two small grey ovals. Newly synthesized (-)-strand RNA is in red. RNA synthesis takes place in association with the membranous web.
Fig.3  A model for de novo initiated RNA synthesis bythe NS5B protein and the locations of the four pockets targeted by nonnucleoside inhibitors. ) A model for de novo initiated RNA synthesis by the HCV NS5B protein. The three subdomains of the polymerase are shown in different shades of grey while the active site residues are shown as green asterisks. The blue line represents the Δ1 loop, which regulates a major conformational change needed for the transition from initiation to elongative RNA synthesis. The thick red line denotes the template RNA. The first two schematics (counted from the left) denotes the binding of either the initiation nucleotide, GTP, or binding of the template RNA. The third schematic denotes the formation of a ternary complex. The last schematic shows the conformational change that takes place upon the synthesis of the nascent RNA. This conformational change is necessitated by the steric constrains of the closed template channel. ) A space fill model of the 1b HCV polymerase (PDB ID: 1QUV). Key features illustrated are the Δ1 loop (in blue ribbon structure), the four allosteric sites that can bind nonnucleoside inhibitors, and the divalent metal-binding active site (gold). HCV 1b genotype NS5B (PDB ID: 1QUV) was used for the model. The four drug binding pockets were as described by Pauwels et al. (). The models were generated using the program Chimera from UCSF.
Fig.4  Schematics of the cell-based subgenomic replicons developed to facilite studies of HCV replication. (A) A bi-cistronic HCV subgenomic replicon originally designed by Lohmann et al. (). This replicon is composed of the HCV 5′NTR, selectable marker gene Neo, IRES from EMCV, HCV nonstructural genes NS3 to NS5B and HCV 3′NTR. (B) A reporter replicon suitable for transient transfection assay. (C) A selectable reporter replicon, in which reporter gene and selectable marker gene (Neo) were joined by a cleavable ubiquitin (Ubi) sequences in the first cistron. (D) Structure of mono-cistronic reporter replicon. In this construct, the reporter gene is fused in frame to the HCV NS3-NS5B by ubiquitin, the fusion polyprotein is translated by the HCV IRES. (E). Diagram for the 5BR assay, an indirect assay that amplifies signals for RNA synthesis by the HCV polymerase through RIG-I-dependent activation of reporter production ().
1 Amako Y, Tsukiyama-Kohara K, Katsume A, Hirata Y, Sekiguchi S, Tobita Y, Hayashi Y, Hishima T, Funata N, Yonekawa H, Kohara M (2010). Pathogenesis of hepatitis C virus infection in Tupaia belangeri. J Virol , 84(1): 303-311
doi: 10.1128/JVI.01448-09 pmid:19846521
2 Antonysamy S S, Aubol B, Blaney J, Browner M F, Giannetti A M, Harris S F, Hébert N, Hendle J, Hopkins S, Jefferson E, Kissinger C, Leveque V, Marciano D, McGee E, Nájera I, Nolan B, Tomimoto M, Torres E, Wright T (2008). Fragment-based discovery of hepatitis C virus NS5b RNA polymerase inhibitors. Bioorg Med Chem Lett , 18(9): 2990-2995
doi: 10.1016/j.bmcl.2008.03.056 pmid:18400495
3 Ariumi Y, Kuroki M, Maki M, Ikeda M, Dansako H, Wakita T, Kato N (2011). The ESCRT system is required for hepatitis C virus production. PLoS ONE , 6(1): e14517
doi: 10.1371/journal.pone.0014517 pmid:21264300
4 Bacon B R, Gordon S C, Lawitz E, Marcellin P, Vierling J M, Zeuzem S, Poordad F,Goodman Z D, Sings H L ,BoparaiN, Burroughs M, Brass C A, Albrecht J K ,Esteban R ,and the HCV RESPOND-2 Investigators (2011). Boceprevir for previously treated chronic HCV genotype 1 infection. N Engl J Med , 364(13): 1207-1217
doi: 10.1056/NEJMoa1009482 pmid:21449784
5 Bartenschlager R, Sparacio S (2007). Hepatitis C virus molecular clones and their replication capacity in vivo and in cell culture. Virus Res , 127(2): 195-207
doi: 10.1016/j.virusres.2007.02.022 pmid:17428568
6 Behrens S E, Tomei L, De Francesco R (1996). Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J , 15(1): 12-22
pmid:8598194
7 Bensadoun P, Rodriguez C, Soulier A, Higgs M, Chevaliez S, Pawlotsky J M (2011). Genetic background of hepatocyte cell lines: are in vitro hepatitis C virus research data reliable? Hepatology , 54(2): 748
doi: 10.1002/hep.24278 pmid:21384407
8 Biswal B K, Cherney M M, Wang M, Chan L, Yannopoulos C G, Bilimoria D, Nicolas O, Bedard J, James M N (2004). Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J Biol Chem , 280(18): 18202-18210
doi: 10.1074/jbc.M413410200 pmid:15746101
9 Blight K J, McKeating J A, Marcotrigiano J, Rice C M (2003). Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol , 77(5): 3181-3190
doi: 10.1128/JVI.77.5.3181-3190.2003 pmid:12584342
10 Boonstra A, van der Laan L J, Vanwolleghem T, Janssen H L (2009). Experimental models for hepatitis C viral infection. Hepatology , 50(5): 1646-1655
doi: 10.1002/hep.23138 pmid:19670425
11 Brass V, Gouttenoire J, Wahl A, Pal Z, Blum H E, Penin F, Moradpour D (2010). Hepatitis C virus RNA replication requires a conserved structural motif within the transmembrane domain of the NS5B RNA-dependent RNA polymerase. J Virol , 84(21): 11580-11584
doi: 10.1128/JVI.01519-10 pmid:20739529
12 Bressanelli S, Tomei L, Roussel A, Incitti I, Vitale R L, Mathieu M, De Francesco R, Rey F A (1999). Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci USA , 96(23): 13034-13039
doi: 10.1073/pnas.96.23.13034 pmid:10557268
13 Buck M (2008). Direct infection and replication of naturally occurring hepatitis C virus genotypes 1, 2, 3 and 4 in normal human hepatocyte cultures.. PLoS ONE , 3(7): e2660
doi: 10.1371/journal.pone.0002660 pmid:18628977
14 Bukh J (2004). A critical role for the chimpanzee model in the study of hepatitis C. Hepatology , 39(6): 1469-1475
doi: 10.1002/hep.20268 pmid:15185284
15 Burton J R Jr, Everson G T (2009). HCV NS5B polymerase inhibitors. Clin Liver Dis , 13(3): 453-465
doi: 10.1016/j.cld.2009.05.001 pmid:19628161
16 Carroll S S, Tomassini J E, Bosserman M, Getty K, Stahlhut M W, Eldrup A B, Bhat B, Hall D, Simcoe A L, LaFemina R, Rutkowski C A, Wolanski B, Yang Z, Migliaccio G, De Francesco R, Kuo L C, MacCoss M, Olsen D B (2003). Inhibition of hepatitis C virus RNA replication by 2′-modified nucleoside analogs. J Biol Chem , 278(14): 11979-11984
doi: 10.1074/jbc.M210914200 pmid:12554735
17 Chatterji U, Bobardt M, Selvarajah S, Yang F, Tang H, Sakamoto N, Vuagniaux G, Parkinson T, Gallay P (2009). The isomerase active site of cyclophilin A is critical for hepatitis C virus replication. J Biol Chem , 284(25): 16998-17005
doi: 10.1074/jbc.M109.007625 pmid:19380579
18 Chinnaswamy S, Cai H, Kao C (2010a). An update on small molecule inhibitors of the HCV NS5B polymerase: effects on RNA synthesis in vitro and in cultured cells, and potential resistance in viral quasispecies. Virus Adaptation and Treatment , 2: 73-89
19 Chinnaswamy S, Murali A, Cai H, Yi G, Palaninathan S, Kao C C (2010b). Conformations of the monomeric Hepatitis C Virus RNA-dependent RNA Polymerase. Virus Treatments and Adaptation , 2: 21-39
20 Chinnaswamy S, Murali A, Li P, Fujisaki K, Kao C C (2010c). Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA polymerase by intermolecular interactions. J Virol , 84(12): 5923-5935
doi: 10.1128/JVI.02446-09 pmid:20375156
21 Chinnaswamy S, Yarbrough I, Palaninathan S, Kumar C T, Vijayaraghavan V, Demeler B, Lemon S M, Sacchettini J C, Kao C C (2008). A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase. J Biol Chem , 283(29): 20535-20546
doi: 10.1074/jbc.M801490200 pmid:18442978
22 Choo Q L, Kuo G, Weiner A J, Overby L R, Bradley D W, Houghton M (1989). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science , 244(4902): 359-362
doi: 2523562" target="_blank">10.1126/science. pmid:2523562 pmid:2523562
23 Clemente-Casares P, López-Jiménez A J, Bellón-Echeverría I, Encinar J A, Martínez-Alfaro E, Pérez-Flores R, Mas A (2011). De novo polymerase activity and oligomerization of hepatitis C virus RNA-dependent RNA-polymerases from genotypes 1 to 5. PLoS ONE , 6(4): e18515
doi: 10.1371/journal.pone.0018515 pmid:21490973
24 Deval J, Powdrill M H, D’Abramo C M, Cellai L, G?tte M (2007). Pyrophosphorolytic excision of nonobligate chain terminators by hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother , 51(8): 2920-2928
doi: 10.1128/AAC.00186-07 pmid:17502402
25 Di Marco S, Volpari C, Tomei L, Altamura S, Harper S, Narjes F, Koch U, Rowley M, De Francesco R, Migliaccio G, Carfí A (2005). Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. J Biol Chem , 280(33): 29765-29770
doi: 10.1074/jbc.M505423200 pmid:15955819
26 Ding C B, Hang J P, Zhao Y, Peng Z G, Song D Q, Jiang J D (2011). Zebrafish as a potential model organism for drug test against hepatitis C virus. PLoS One, epub ahead of print : 6(8): e22921
27 Diviney S, Tuplin A, Struthers M, Armstrong V, Elliott R M, Simmonds P, Evans D J (2008). A hepatitis C virus cis-acting replication element forms a long-range RNA-RNA interaction with upstream RNA sequences in NS5B. J Virol , 82(18): 9008-9022
doi: 10.1128/JVI.02326-07 pmid:18614633
28 Dorner M, Horwitz J A, Robbins J B, Barry W T, Feng Q, Mu K, Jones C T, Schoggins J W, Catanese M T, Burton D R, Law M, Rice C M, Ploss A (2011). A genetically humanized mouse model for hepatitis C virus infection. Nature , 474(7350): 208-211
doi: 10.1038/nature10168 pmid:21654804
29 Douglas D N, Kawahara T, Sis B, Bond D, Fischer K P, Tyrrell D L, Lewis J T, Kneteman N M (2010). Therapeutic efficacy of human hepatocyte transplantation in a SCID/uPA mouse model with inducible liver disease. PLoS ONE , 5(2): e9209
doi: 10.1371/journal.pone.0009209 pmid:20174638
30 Dutartre H, Bussetta C, Boretto J, Canard B (2006). General catalytic deficiency of hepatitis C virus RNA polymerase with an S282T mutation and mutually exclusive resistance towards 2′-modified nucleotide analogues. Antimicrob Agents Chemother , 50(12): 4161-4169
doi: 10.1128/AAC.00433-06 pmid:17000745
31 Egger D, W?lk B, Gosert R, Bianchi L, Blum H E, Moradpour D, Bienz K (2002). Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol , 76(12): 5974-5984
doi: 10.1128/JVI.76.12.5974-5984.2002 pmid:12021330
32 EI-Serag H B (2004). Hepatocellular carcinoma: recent trends in the United States. Gastroenterology , 127(5 Suppl 1): S27-S34
doi: 10.1053/j.gastro.2004.09.013 pmid:15508094
33 Frese M, Schw?rzle V, Barth K, Krieger N, Lohmann V, Mihm S, Haller O, Bartenschlager R (2002). Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology , 35(3): 694-703
doi: 10.1053/jhep.2002.31770 pmid:11870386
34 Gale M Jr, Foy E M (2005). Evasion of intracellular host defence by hepatitis C virus. Nature , 436(7053): 939-945
doi: 10.1038/nature04078 pmid:16107833
35 Gale M Jr, Sen G C (2009). Viral evasion of the interferon system. J Interferon Cytokine Res , 29(9): 475-476
doi: 10.1089/jir.2009.0078 pmid:19694549
36 Ge D, Fellay J, Thompson A J, Simon J S, Shianna K V, Urban T J, Heinzen E L, Qiu P, Bertelsen A H, Muir A J, Sulkowski M, McHutchison J G, Goldstein D B (2009). Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature , 461(7262): 399-401
doi: 10.1038/nature08309 pmid:19684573
37 Mo H, Hebner C, Harris JBae A,Wong K, Delaney W, Oldach D, Miller MD (2011). Characterization of viral resistance mutations in genotype 1 HCV patients receiving combination therapy with a protease inhibitor and a polymerase inhibitor with or without Ribavirin Gilead. EASL 46th Annual Meeting. Apr 3rd 2011
38 Grakoui A, Hanson H L, Rice C M (2001). Bad time for Bonzo? Experimental models of hepatitis C virus infection, replication, and pathogenesis. Hepatology , 33(3): 489-495
doi: 10.1053/jhep.2001.23041 pmid:11230726
39 Hang J Q, Yang Y, Harris S F, Leveque V, Whittington H J, Rajyaguru S, Ao-Ieong G, McCown M F, Wong A, Giannetti A M, Le Pogam S, Talamás F, Cammack N, Nájera I, Klumpp K (2009). Slow binding inhibition and mechanism of resistance of non-nucleoside polymerase inhibitors of hepatitis C virus. J Biol Chem , 284(23): 15517-15529
doi: 10.1074/jbc.M808889200 pmid:19246450
40 Hardy R W, Marcotrigiano J, Blight K J, Majors J E, Rice C M (2003). Hepatitis C virus RNA synthesis in a cell-free system isolated from replicon-containing hepatoma cells. J Virol , 77(3): 2029-2037
doi: 10.1128/JVI.77.3.2029-2037.2003 pmid:12525637
41 Harrus D, Ahmed-El-Sayed N, Simister P C, Miller S, Triconnet M, Hagedorn C H, Mahias K, Rey F A, Astier-Gin T, Bressanelli S (2010). Further insights into the roles of GTP and the C terminus of the hepatitis C virus polymerase in the initiation of RNA synthesis. J Biol Chem , 285(43): 32906-32918
doi: 10.1074/jbc.M110.151316 pmid:20729191
42 Heck J A, Lam A M, Narayanan N, Frick D N (2008). Effects of mutagenic and chain-terminating nucleotide analogs on enzymes isolated from hepatitis C virus strains of various genotypes. Antimicrob Agents Chemother , 52(6): 1901-1911
doi: 10.1128/AAC.01496-07 pmid:18391043
43 Horscroft N, Lai V C, Cheney W, Yao N, Wu J Z, Hong Z, Zhong W (2005). Replicon cell culture system as a valuable tool in antiviral drug discovery against hepatitis C virus. Antivir Chem Chemother , 16(1): 1-12
pmid:15739617
44 Hsu M, Zhang J, Flint M, Logvinoff C, Cheng-Mayer C, Rice C M, McKeating J A (2003). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA , 100(12): 7271-7276
doi: 10.1073/pnas.0832180100 pmid:12761383
45 Hsu N Y, Ilnytska O, Belov G, Santiana M, Chen Y H, Takvorian P M, Pau C, van der Schaar H, Kaushik-Basu N, Balla T, Cameron C E, Ehrenfeld E, van Kuppeveld F J, Altan-Bonnet N (2010). Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell , 141(5): 799-811
doi: 10.1016/j.cell.2010.03.050 pmid:20510927
46 Huang H, Sun F, Owen D M, Li W, Chen Y, Gale M Jr, Ye J (2007). Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci USA , 104(14): 5848-5853
doi: 10.1073/pnas.0700760104 pmid:17376867
47 Ilan E, Arazi J, Nussbaum O, Zauberman A, Eren R, Lubin I, Neville L, Ben-Moshe O, Kischitzky A, Litchi A, Margalit I, Gopher J, Mounir S, Cai W, Daudi N, Eid A, Jurim O, Czerniak A, Galun E, Dagan S (2002). The hepatitis C virus (HCV)-Trimera mouse: a model for evaluation of agents against HCV. J Infect Dis , 185(2): 153-161
doi: 10.1086/338266 pmid:11807688
48 Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science , 309(5740): 1577-1581
doi: 10.1126/science.1113329 pmid:16141076
49 Kao C C, Yang X, Kline A, Wang Q M, Barket D, Heinz B A (2000). Template requirements for RNA synthesis by a recombinant hepatitis C virus RNA-dependent RNA polymerase. J Virol , 74(23): 11121-11128
doi: 10.1128/JVI.74.23.11121-11128.2000 pmid:11070008
50 Kato N, Mori K, Abe K, Dansako H, Kuroki M, Ariumi Y, Wakita T, Ikeda M (2009). Efficient replication systems for hepatitis C virus using a new human hepatoma cell line. Virus Res , 146(1-2): 41-50
doi: 10.1016/j.virusres.2009.08.006 pmid:19720094
51 Khromykh A A, Westaway E G (1997). Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol , 71(2): 1497-1505
pmid:8995675
52 Klumpp K, Lévêque V, Le Pogam S, Ma H, Jiang W R, Kang H, Granycome C, Singer M, Laxton C, Hang J Q, Sarma K, Smith D B, Heindl D, Hobbs C J, Merrett J H, Symons J, Cammack N, Martin J A, Devos R, Nájera I (2006). The novel nucleoside analog R1479 (4′-azidocytidine) is a potent inhibitor of NS5B-dependent RNA synthesis and hepatitis C virus replication in cell culture. J Biol Chem , 281(7): 3793-3799
doi: 10.1074/jbc.M510195200 pmid:16316989
53 Koutsoudakis G, Herrmann E, Kallis S, Bartenschlager R, Pietschmann T (2007). The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J Virol , 81(2): 588-598
doi: 10.1128/JVI.01534-06 pmid:17079281
54 Krieger N, Lohmann V, Bartenschlager R (2001). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol , 75(10): 4614-4624
doi: 10.1128/JVI.75.10.4614-4624.2001 pmid:11312331
55 Lee J C, Tseng C K, Chen K J, Huang K J, Lin C K, Lin Y T (2010). A cell-based reporter assay for inhibitor screening of hepatitis C virus RNA-dependent RNA polymerase. Anal Biochem , 403(1-2): 52-62
doi: 10.1016/j.ab.2010.04.004 pmid:20382106
56 Lesburg C A, Cable M B, Ferrari E, Hong Z, Mannarino A F, Weber P C (1999). Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol , 6(10): 937-943
doi: 10.1038/13305 pmid:10504728
57 Lindenbach B D, Evans M J, Syder A J, W?lk B, Tellinghuisen T L, Liu C C, Maruyama T, Hynes R O, Burton D R, McKeating J A, Rice C M (2005). Complete replication of hepatitis C virus in cell culture. Science , 309(5734): 623-626
doi: 10.1126/science.1114016 pmid:15947137
58 Lindenbach B D, Meuleman P, Ploss A, Vanwolleghem T, Syder A J, McKeating J A, Lanford R E, Feinstone S M, Major M E, Leroux-Roels G, Rice C M (2006). Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci USA , 103(10): 3805-3809
doi: 10.1073/pnas.0511218103 pmid:16484368
59 Lohmann V, K?rner F, Dobierzewska A, Bartenschlager R (2001). Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol , 75(3): 1437-1449
doi: 10.1128/JVI.75.3.1437-1449.2001 pmid:11152517
60 Lohmann V, K?rner F, Herian U, Bartenschlager R (1997). Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J Virol , 71(11): 8416-8428
pmid:9343198
61 Lohmann V, K?rner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science , 285(5424): 110-113
doi: 10.1126/science.285.5424.110 pmid:10390360
62 Love R A, Parge H E, Yu X, Hickey M J, Diehl W, Gao J, Wriggers H, Ekker A, Wang L, Thomson J A, Dragovich P S, Fuhrman S A (2003). Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme. J Virol , 77(13): 7575-7581
doi: 10.1128/JVI.77.13.7575-7581.2003 pmid:12805457
63 Lu C, Xu H, Ranjith-Kumar C T, Brooks M T, Hou T Y, Hu F, Herr A B, Strong R K, Kao C C, Li P (2010). The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure , 18(8): 1032-1043
doi: 10.1016/j.str.2010.05.007 pmid:20637642
64 Luo G, Hamatake R K, Mathis D M, Racela J, Rigat K L, Lemm J, Colonno R J (2000). De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol , 74(2): 851-863
doi: 10.1128/JVI.74.2.851-863.2000 pmid:10623748
65 Ma H, Leveque V, De Witte A, Li W, Hendricks T, Clausen S M, Cammack N, Klumpp K (2005). Inhibition of native hepatitis C virus replicase by nucleotide and non-nucleoside inhibitors. Virology , 332(1): 8-15
doi: 10.1016/j.virol.2004.11.024 pmid:15661135
66 McLauchlan J (2009). Hepatitis C virus: viral proteins on the move. Biochem Soc Trans , 37(5): 986-990
doi: 10.1042/BST0370986 pmid:19754437
67 Meanwell N A, Kadow J F, Scola P M (2009). Chapter 20, Progress towards the discovery and development of specifically targeted inhibitors of hepatitis C virus. Ann Reports in Med Chem, 44:397-440
68 Mercer D F, Schiller D E, Elliott J F, Douglas D N, Hao C, Rinfret A, Addison W R, Fischer K P, Churchill T A, Lakey J R, Tyrrell D L, Kneteman N M (2001). Hepatitis C virus replication in mice with chimeric human livers. Nat Med , 7(8): 927-933
doi: 10.1038/90968 pmid:11479625
69 Micallef J M, Kaldor J M, Dore G J (2006). Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. J Viral Hepat , 13(1): 34-41
doi: 10.1111/j.1365-2893.2005.00651.x pmid:16364080
70 Moradpour D, Evans M J, Gosert R, Yuan Z, Blum H E, Goff S P, Lindenbach B D, Rice C M (2004). Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol , 78(14): 7400-7409
doi: 10.1128/JVI.78.14.7400-7409.2004 pmid:15220413
71 Moradpour D, Penin F, Rice C M (2007). Replication of hepatitis C virus. Nat Rev Microbiol , 5(6): 453-463
doi: 10.1038/nrmicro1645 pmid:17487147
72 Moriishi K, Matsuura Y (2007). Host factors involved in the replication of hepatitis C virus. Rev Med Virol , 17(5): 343-354
doi: 10.1002/rmv.542 pmid:17563922
73 Munakata T, Liang Y, Kim S, McGivern D R, Huibregtse J, Nomoto A, Lemon S M (2007). Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein. PLoS Pathog , 3(9): 1335-1347
doi: 10.1371/journal.ppat.0030139 pmid:17907805
74 Murakami E, Niu C, Bao H, Micolochick Steuer H M, Whitaker T, Nachman T, Sofia M A, Wang P, Otto M J, Furman P A (2008). The mechanism of action of beta-D-2′-deoxy-2′-fluoro-2′-C-methylcytidine involves a second metabolic pathway leading to beta-D-2′-deoxy-2′-fluoro-2′-C-methyluridine 5′-triphosphate, a potent inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother , 52(2): 458-464
doi: 10.1128/AAC.01184-07 pmid:17999967
75 Nyanguile O, Devogelaere B, Vijgen L, Van den Broeck W, Pauwels F, Cummings M D, De Bondt H L, Vos A M, Berke J M, Lenz O, Vandercruyssen G, Vermeiren K, Mostmans W, Dehertogh P, Delouvroy F, Vendeville S, VanDyck K, Dockx K, Cleiren E, Raboisson P, Simmen K A, Fanning G C (2010). 1a/1b subtype profiling of nonnucleoside polymerase inhibitors of hepatitis C virus. J Virol , 84(6): 2923-2934
doi: 10.1128/JVI.01980-09 pmid:20071590
76 O’Farrell D, Trowbridge R, Rowlands D, J?ger J (2003). Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. J Mol Biol , 326(4): 1025-1035
doi: 10.1016/S0022-2836(02)01439-0 pmid:12589751
77 Oh J W, Ito T, Lai M M (1999). A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J Virol , 73(9): 7694-7702
pmid:10438859
78 Olsen D B, Eldrup A B, Bartholomew L, Bhat B, Bosserman M R, Ceccacci A, Colwell L F, Fay J F, Flores O A, Getty K L, Grobler J A, LaFemina R L, Markel E J, Migliaccio G, Prhavc M, Stahlhut M W, Tomassini J E, MacCoss M, Hazuda D J, Carroll S S (2004). A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties. Antimicrob Agents Chemother , 48(10): 3944-3953
doi: 10.1128/AAC.48.10.3944-3953.2004 pmid:15388457
79 Pang P S, Planet P J, Glenn J S (2009). The evolution of the major hepatitis C genotypes correlates with clinical response to interferon therapy. PLoS ONE , 4(8): e6579
doi: 10.1371/journal.pone.0006579 pmid:19668364
80 Pauwels F, Mostmans W, Quirynen L M, Mm van derHelm L, Boutton C W, Rueff A, Cleiren E, Raboisson P, Surleraux D, Nyanguile O, Simmon K A (2007). Binding-site identification and genotypic profiling of hepatitis C virus polymerase inhibitors. J Virol. 81:6909-6919Pichlmair A, Schulz O, Tan CP, N?slund TI, Liljestr?m P, Weber F, Reis e Sousa C (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science , 314(5801): 997-1001
81 Pichlmair ASchulz O, Tan CP, N?slund TL, Liljestr?m P, Weber F, C R (2006). RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5'-Phosphates. Science , 314(5801): 997-1001
82 Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, Steinmann E, Abid K, Negro F, Dreux M, Cosset F L, Bartenschlager R (2006). Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA , 103(19): 7408-7413
doi: 10.1073/pnas.0504877103 pmid:16651538
83 Pietschmann T, Lohmann V, Rutter G, Kurpanek K, Bartenschlager R (2001). Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol , 75(3): 1252-1264
doi: 10.1128/JVI.75.3.1252-1264.2001 pmid:11152498
84 Prince A M, Brotman B, Lee D H, Ren L, Moore B S, Scheffel J W (1999). Significance of the anti-E2 response in self-limited and chronic hepatitis C virus infections in chimpanzees and in humans. J Infect Dis , 180(4): 987-991
doi: 10.1086/314973 pmid:10479122
85 Ranjith-Kumar C T, Gutshall L, Kim M J, Sarisky R T, Kao C C (2002). Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases. J Virol , 76(24): 12526-12536
doi: 10.1128/JVI.76.24.12526-12536.2002 pmid:12438578
86 Ranjith-Kumar C T, Wen Y, Baxter N, Bhardwaj K, Cheng Kao C (2011). A cell-based assay for RNA synthesis by the HCV polymerase reveals new insights on mechanism of polymerase inhibitors and modulation by NS5A. PLoS ONE , 6(7): e22575
doi: 10.1371/journal.pone.0022575 pmid:21799903
87 Rhim J A, Sandgren E P, Degen J L, Palmiter R D, Brinster R L (1994). Replacement of diseased mouse liver by hepatic cell transplantation. Science , 263(5150): 1149-1152
doi: 8108734" target="_blank">10.1126/science. pmid:8108734 pmid:8108734
88 Saito T, Owen D M, Jiang F, Marcotrigiano J, Gale M Jr (2008). Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature , 454(7203): 523-527
doi: 10.1038/nature07106 pmid:18548002
89 Sarrazin C, Kieffer T L, Bartels D, Hanzelka B, Müh U, Welker M, Wincheringer D, Zhou Y, Chu H M, Lin C, Weegink C, Reesink H, Zeuzem S, Kwong A D (2007). Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology , 132(5): 1767-1777
doi: 10.1053/j.gastro.2007.02.037 pmid:17484874
90 Shi S T, Herlihy K J, Graham J P, Fuhrman S A, Doan C, Parge H, Hickey M, Gao J, Yu X, Chau F, Gonzalez J, Li H, Lewis C, Patick A K, Duggal R (2008). In vitro resistance study of AG-021541, a novel nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother , 52(2): 675-683
doi: 10.1128/AAC.00834-07 pmid:18070954
91 Shimakami T, Honda M, Kusakawa T, Murata T, Shimotohno K, Kaneko S, Murakami S (2006). Effect of hepatitis C virus (HCV) NS5B-nucleolin interaction on HCV replication with HCV subgenomic replicon. J Virol , 80(7): 3332-3340
doi: 10.1128/JVI.80.7.3332-3340.2006 pmid:16537600
92 Shimakami T, Lanford R E, Lemon S M (2009). Hepatitis C: recent successes and continuing challenges in the development of improved treatment modalities. Curr Opin Pharmacol , 9(5): 537-544
doi: 10.1016/j.coph.2009.08.008 pmid:19762279
93 Simmonds P, Bukh J, Combet C, Deléage G, Enomoto N, Feinstone S, Halfon P, Inchauspé G, Kuiken C, Maertens G, Mizokami M, Murphy D G, Okamoto H, Pawlotsky J M, Penin F, Sablon E, Shin-I T, Stuyver L J, Thiel H J, Viazov S, Weiner A J, Widell A (2005). Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology , 42(4): 962-973
doi: 10.1002/hep.20819 pmid:16149085
94 Steitz T A (1999). DNA polymerases: structural diversity and common mechanisms. J Biol Chem , 274(25): 17395-17398
doi: 10.1074/jbc.274.25.17395 pmid:10364165
95 Sumpter R Jr, Loo Y M, Foy E, Li K, Yoneyama M, Fujita T, Lemon S M, Gale M Jr (2005). Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol , 79(5): 2689-2699
doi: 10.1128/JVI.79.5.2689-2699.2005 pmid:15708988
96 Sun X L, Johnson R B, Hockman M A, Wang Q M (2000). De novo RNA synthesis catalyzed by HCV RNA-dependent RNA polymerase. Biochem Biophys Res Commun , 268(3): 798-803
doi: 10.1006/bbrc.2000.2120 pmid:10679285
97 Tateno C, Yoshizane Y, Saito N, Kataoka M, Utoh R, Yamasaki C, Tachibana A, Soeno Y, Asahina K, Hino H, Asahara T, Yokoi T, Furukawa T, Yoshizato K (2004). Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol , 165(3): 901-912
doi: 10.1016/S0002-9440(10)63352-4 pmid:15331414
98 Theofilopoulos A N, Baccala R, Beutler B, Kono D H (2005). Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol , 23(1): 307-335
doi: 10.1146/annurev.immunol.23.021704.115843 pmid:15771573
99 Thomas D L, Thio C L, Martin M P, Qi Y, Ge D, O’Huigin C, Kidd J, Kidd K, Khakoo S I, Alexander G, Goedert J J, Kirk G D, Donfield S M, Rosen H R, Tobler L H, Busch M P, McHutchison J G, Goldstein D B, Carrington M (2009). Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature , 461(7265): 798-801
doi: 10.1038/nature08463 pmid:19759533
100 Tomassini J E, Boots E, Gan L, Graham P, Munshi V, Wolanski B, Fay J F, Getty K, LaFemina R (2003). An in vitro Flaviviridae replicase system capable of authentic RNA replication. Virology , 313(1): 274-285
doi: 10.1016/S0042-6822(03)00314-3 pmid:12951039
101 Tomei L, Altamura S, Bartholomew L, Biroccio A, Ceccacci A, Pacini L, Narjes F, Gennari N, Bisbocci M, Incitti I, Orsatti L, Harper S, Stansfield I, Rowley M, De Francesco R, Migliaccio G (2003). Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J Virol , 77(24): 13225-13231
doi: 10.1128/JVI.77.24.13225-13231.2003 pmid:14645579
102 Tomei L, Vitale R L, Incitti I, Serafini S, Altamura S, Vitelli A, De Francesco R (2000). Biochemical characterization of a hepatitis C virus RNA-dependent RNA polymerase mutant lacking the C-terminal hydrophobic sequence. J Gen Virol , 81(Pt 3): 759-767
pmid:10675414
103 Triyatni M, Berger E A, Saunier B (2011). A new model to produce infectious hepatitis C virus without the replication requirement. PLoS Pathog , 7(4): e1001333
doi: 10.1371/journal.ppat.1001333 pmid:21533214
104 van Dijk A A, Makeyev E V, Bamford D H (2004). Initiation of viral RNA-dependent RNA polymerization. J Gen Virol , 85(5): 1077-1093
doi: 10.1099/vir.0.19731-0 pmid:15105525
105 Vrolijk J M, Kaul A, Hansen B E, Lohmann V, Haagmans B L, Schalm S W, Bartenschlager R (2003). A replicon-based bioassay for the measurement of interferons in patients with chronic hepatitis C. J Virol Methods , 110(2): 201-209
doi: 10.1016/S0166-0934(03)00134-4 pmid:12798249
106 Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Kr?usslich H G, Mizokami M, Bartenschlager R, Liang T J (2005). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med , 11(7): 791-796
doi: 10.1038/nm1268 pmid:15951748
107 Wakita T, Taya C, Katsume A, Kato J, Yonekawa H, Kanegae Y, Saito I, Hayashi Y, Koike M, Kohara M (1998). Efficient conditional transgene expression in hepatitis C virus cDNA transgenic mice mediated by the Cre/loxP system. J Biol Chem , 273(15): 9001-9006
doi: 10.1074/jbc.273.15.9001 pmid:9535887
108 Wang Q M, Hockman M A, Staschke K, Johnson R B, Case K A, Lu J, Parsons S, Zhang F, Rathnachalam R, Kirkegaard K, Colacino J M (2002). Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase. J Virol , 76(8): 3865-3872
doi: 10.1128/JVI.76.8.3865-3872.2002 pmid:11907226
109 Wang Q M, Johnson R B, Chen D, Lévêque V J, Ren J, Hockman M A, Abe K, Hachisu T, Kondo Y, Isaka Y, Sato A, Fujiwara T (2004). Expression and purification of untagged full-length HCV NS5B RNA-dependent RNA polymerase. Protein Expr Purif , 35(2): 304-312
doi: 10.1016/j.pep.2004.01.017 pmid:15135407
110 Wasley A, Alter M J (2000). Epidemiology of hepatitis C: geographic differences and temporal trends. Semin Liver Dis , 20(1): 1-16
doi: 10.1055/s-2000-9506 pmid:10895428
111 Weng L, Hirata Y, Arai M, Kohara M, Wakita T, Watashi K, Shimotohno K, He Y, Zhong J, Toyoda T (2010). Sphingomyelin activates hepatitis C virus RNA polymerase in a genotype-specific manner. J Virol , 84(22): 11761-11770
doi: 10.1128/JVI.00638-10 pmid:20844041
112 Yi M, Bodola F, Lemon S M (2002). Subgenomic hepatitis C virus replicons inducing expression of a secreted enzymatic reporter protein. Virology , 304(2): 197-210
doi: 10.1006/viro.2002.1652 pmid:12504562
113 Yi M, Villanueva R A, Thomas D L, Wakita T, Lemon S M (2006). Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci USA , 103(7): 2310-2315
doi: 10.1073/pnas.0510727103 pmid:16461899
114 Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, Focaccia R, Younossi Z, Foster G R, Horban A, Ferenci P, Nevens F, Müllhaupt B, Pockros P, Terg R, Shouval D, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Picchio G, Beumont M, and the REALIZE Study Team (2011). Telaprevir for retreatment of HCV infection. N Engl J Med , 364(25): 2417-2428
doi: 10.1056/NEJMoa1013086 pmid:21696308
115 Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton D R, Wieland S F, Uprichard S L, Wakita T, Chisari F V (2005). Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA , 102(26): 9294-9299
doi: 10.1073/pnas.0503596102 pmid:15939869
116 Zhong W, Uss A S, Ferrari E, Lau J Y, Hong Z (2000). De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase. J Virol , 74(4): 2017-2022
doi: 10.1128/JVI.74.4.2017-2022.2000 pmid:10644375
117 Zon L I, Peterson R T (2005). In vivo drug discovery in the zebrafish. Nat Rev Drug Discov , 4(1): 35-44
doi: 10.1038/nrd1606 pmid:15688071
[1] Hoda Sabati, Hossein Motamedi. Investigation of the relationship between cell surface hydrophobicity and demulsifying capability of biodemulsifier-producing bacteria[J]. Front. Biol., 2018, 13(5): 358-365.
[2] Kavitha S, Vimala Raghavan. Isolation and characterization of marine biofilm forming bacteria from a ship’s hull[J]. Front. Biol., 2018, 13(3): 208-214.
[3] Mohammad Taha Jalali, Abdorrahim Absalan, Alireza Mohseni, Gholam Abbas Kaydani, Zeinab Deris Zayeri. Evaluation of protein Z plasma level in beta-thalassemia major patients in Ahvaz city in Iran[J]. Front. Biol., 2017, 12(6): 442-447.
[4] Liang XUE, W. Andy TAO. Current technologies to identify protein kinase substrates in high throughput[J]. Front Biol, 2013, 8(2): 216-227.
[5] WANG Xingguo, YIN Jiao, XU Xian. Conserved hypothetical BB0462 protein enhances the transcription activity of AV promoter[J]. Front. Biol., 2008, 3(2): 160-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed