Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (3) : 168-179    https://doi.org/10.1007/s11515-018-1502-6
REVIEW
CBP/p300: intramolecular and intermolecular regulations
Yongming Xue1,2(), Hong Wen1,3, Xiaobing Shi1,2,3()
1. Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
2. Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
3. Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
 Download: PDF(707 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: CREB binding protein (CBP) and its close paralogue p300 are transcriptional coactivators with intrinsic acetyltransferase activity. Both CBP/p300 play critical roles in development and diseases. The enzymatic and biological functions of CBP/p300 are tightly regulated by themselves and by external factors. However, a comprehensive up-to-date review of the intramolecular and intermolecular regulations is lacking.

OBJECTIVE: To summarize the molecular mechanisms regulating CBP/p300s functions.

METHODS: A systematic literature search was conducted using the PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) for literatures published during 1985-2018. Keywords “CBP regulation” or “p300 regulation” were used for the search.

RESULTS: The functions of CBP/p300, especially their acetyltransferase activity and chromatin association, are regulated both intramolecularly by their autoinhibitory loop (AIL), bromodomain, and PHD-RING region and intermolecularly by their interacting partners. The intramolecular mechanisms equip CBP/p300 with the capability of self-regulation while the intermolecular mechanisms allow them to respond to various cell signaling pathways.

CONCLUSION: Investigations into those regulation mechanisms are crucial to our understanding of CBP/p300s role in development and pathogenesis. Pharmacological interventions targeting these regulatory mechanisms have therapeutic potentials.

Keywords p300      CBP      histone acetylation      autoacetylation      HAT     
Corresponding Author(s): Yongming Xue,Xiaobing Shi   
Online First Date: 05 July 2018    Issue Date: 31 July 2018
 Cite this article:   
Yongming Xue,Hong Wen,Xiaobing Shi. CBP/p300: intramolecular and intermolecular regulations[J]. Front. Biol., 2018, 13(3): 168-179.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1502-6
https://academic.hep.com.cn/fib/EN/Y2018/V13/I3/168
Fig.1  Regulation of CBP/p300 acetyltransferase activity by AIL, RING domain and BRD. (A) Schematic representation of human CBP/p300 domain architecture. The numbers of residues are also labeled. (B) The HAT domain is in inactive state because hypoacetylated AIL occupies the substrate binding groove and also because RING domain is packed in close proximity to the HAT active site. CBP/p300 AIL can be autoacetylated in trans. HAT domain will become activated when RING domain and the hyperacetylated AIL are displaced from the catalytic site. (C) CBP/p300 BRD is a reader domain preferentially binds acetylated histone H4. The recognition of acetylated histone tail by BRD not only directly recruits CBP/p300 to chromatin but also increases the accessibility of histone substrate, for example, H3, to HAT domain, thus enhancing histone acetylation. Both in cis and in trans models are shown.
Fig.2  Summary of intramolecular and intermolecular mechanisms regulating CBP/p300 acetyltransferase activity (A) and chromatin association (B). Lines with arrows indicate positive regulation whereas blunt-ended lines indicate negative regulation. *: the negative regulatory role of RING domain in CBP/p300 acetyltransferase activity is specific to non-histone substrate.
1 Arany Z, Sellers W R, Livingston D M, Eckner R (1994). E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell, 77(6): 799–800
https://doi.org/10.1016/0092-8674(94)90127-9 pmid: 8004670
2 Bannister A J, Kouzarides T (1996). The CBP co-activator is a histone acetyltransferase. Nature, 384(6610): 641–643
https://doi.org/10.1038/384641a0 pmid: 8967953
3 Berk A J (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene, 24(52): 7673–7685
https://doi.org/10.1038/sj.onc.1209040 pmid: 16299528
4 Best J L, Amezcua C A, Mayr B, Flechner L, Murawsky C M, Emerson B, Zor T, Gardner K H, Montminy M (2004). Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci USA, 101(51): 17622–17627
https://doi.org/10.1073/pnas.0406374101 pmid: 15585582
5 Black J C, Choi J E, Lombardo S R, Carey M (2006). A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell, 23(6): 809–818
https://doi.org/10.1016/j.molcel.2006.07.018 pmid: 16973433
6 Block K M, Wang H, Szabó L Z, Polaske N W, Henchey L K, Dubey R, Kushal S, László C F, Makhoul J, Song Z, Meuillet E J, Olenyuk B Z (2009). Direct inhibition of hypoxia-inducible transcription factor complex with designed dimeric epidithiodiketopiperazine. J Am Chem Soc, 131(50): 18078–18088
https://doi.org/10.1021/ja807601b pmid: 20000859
7 Bose D A, Donahue G, Reinberg D, Shiekhattar R, Bonasio R, Berger S L (2017). RNA Binding to CBP Stimulates Histone Acetylation and Transcription. Cell 168, 135–149 e122
8 Bowers E M, Yan G, Mukherjee C, Orry A, Wang L, Holbert M A, Crump N T, Hazzalin C A, Liszczak G, Yuan H, Larocca C, Saldanha S A, Abagyan R, Sun Y, Meyers D J, Marmorstein R, Mahadevan L C, Alani R M, Cole P A (2010). Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol, 17(5): 471–482
https://doi.org/10.1016/j.chembiol.2010.03.006 pmid: 20534345
9 Ceschin D G, Walia M, Wenk S S, Duboé C, Gaudon C, Xiao Y, Fauquier L, Sankar M, Vandel L, Gronemeyer H (2011). Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev, 25(11): 1132–1146
https://doi.org/10.1101/gad.619211 pmid: 21632823
10 Chakravarti D, LaMorte V J, Nelson M C, Nakajima T, Schulman I G, Juguilon H, Montminy M, Evans R M (1996). Role of CBP/P300 in nuclear receptor signalling. Nature, 383(6595): 99–103
https://doi.org/10.1038/383099a0 pmid: 8779723
11 Chakravarti D, Ogryzko V, Kao H Y, Nash A, Chen H, Nakatani Y, Evans R M (1999). A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell, 96(3): 393–403
https://doi.org/10.1016/S0092-8674(00)80552-8 pmid: 10025405
12 Chan H M, La Thangue N B (2001). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci, 114(Pt 13): 2363–2373
pmid: 11559745
13 Chen C C, Carson J J, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler J K (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134(2): 231–243
https://doi.org/10.1016/j.cell.2008.06.035 pmid: 18662539
14 Chen, J., and Li, Q. (2011). Life and death of transcriptional co-activator p300. Epigenetics: official journal of the DNA Methylation Society 6, 957–961.
15 Chen Y J, Wang Y N, Chang W C (2007). ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression. J Biol Chem, 282(37): 27215–27228
https://doi.org/10.1074/jbc.M700264200 pmid: 17623675
16 Chevillard-Briet M, Trouche D, Vandel L (2002). Control of CBP co-activating activity by arginine methylation. EMBO J, 21(20): 5457–5466
https://doi.org/10.1093/emboj/cdf548 pmid: 12374746
17 Chrivia J C, Kwok R P, Lamb N, Hagiwara M, Montminy M R, Goodman R H (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 365(6449): 855–859
https://doi.org/10.1038/365855a0 pmid: 8413673
18 Conery A R, Centore R C, Neiss A, Keller P J, Joshi S, Spillane K L, Sandy P, Hatton C, Pardo E, Zawadzke L (2016). Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. eLife, 5: e10483
19 Contreras-Martos S, Piai A, Kosol S, Varadi M, Bekesi A, Lebrun P, Volkov A N, Gevaert K, Pierattelli R, Felli I C, Tompa P (2017). Linking functions: an additional role for an intrinsically disordered linker domain in the transcriptional coactivator CBP. Sci Rep, 7(1): 4676
https://doi.org/10.1038/s41598-017-04611-x pmid: 28680062
20 Dancy B M, Cole P A (2015). Protein lysine acetylation by p300/CBP. Chem Rev, 115(6): 2419–2452
https://doi.org/10.1021/cr500452k pmid: 25594381
21 Das C, Lucia M S, Hansen K C, Tyler J K (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459(7243): 113–117
https://doi.org/10.1038/nature07861 pmid: 19270680
22 Das C, Roy S, Namjoshi S, Malarkey C S, Jones D N, Kutateladze T G, Churchill M E, Tyler J K (2014). Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc Natl Acad Sci USA, 111(12): E1072–E1081
https://doi.org/10.1073/pnas.1319122111 pmid: 24616510
23 Debe s J D, Sebo T J, Lohse C M, Murphy L M, Haugen D A, Tindall D J (2003). p300 in prostate cancer proliferation and progression. Cancer Res, 63(22): 7638–7640
pmid: 14633682
24 Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D (2013). Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol, 20(9): 1040–1046
https://doi.org/10.1038/nsmb.2642 pmid: 23934153
25 Dyson H J, Wright P E (2016). Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J Biol Chem, 291(13): 6714–6722
https://doi.org/10.1074/jbc.R115.692020 pmid: 26851278
26 Eckner R, Ewen M E, Newsome D, Gerdes M, DeCaprio J A, Lawrence J B, Livingston D M (1994). Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev, 8(8): 869–884
https://doi.org/10.1101/gad.8.8.869 pmid: 7523245
27 Fonte C, Grenier J, Trousson A, Chauchereau A, Lahuna O, Baulieu E E, Schumacher M, Massaad C (2005). Involvement of beta-catenin and unusual behavior of CBP and p300 in glucocorticosteroid signaling in Schwann cells. Proc Natl Acad Sci USA, 102(40): 14260–14265
https://doi.org/10.1073/pnas.0506930102 pmid: 16186500
28 Fryer C J, Lamar E, Turbachova I, Kintner C, Jones K A (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev, 16(11): 1397–1411
https://doi.org/10.1101/gad.991602 pmid: 12050117
29 Ghosh S, Taylor A, Chin M, Huang H R, Conery A R, Mertz J A, Salmeron A, Dakle P J, Mele D, Cote A, Jayaram H, Setser J W, Poy F, Hatzivassiliou G, DeAlmeida-Nagata D, Sandy P, Hatton C, Romero F A, Chiang E, Reimer T, Crawford T, Pardo E, Watson V G, Tsui V, Cochran A G, Zawadzke L, Harmange J C, Audia J E, Bryant B M, Cummings R T, Magnuson S R, Grogan J L, Bellon S F, Albrecht B K, Sims R J3rd, Lora J M (2016). Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition. J Biol Chem, 291(25): 13014–13027
https://doi.org/10.1074/jbc.M115.708560 pmid: 27056325
30 Giotopoulos G, Chan W I, Horton S J, Ruau D, Gallipoli P, Fowler A, Crawley C, Papaemmanuil E, Campbell P J, Göttgens B, Van Deursen J M, Cole P A, Huntly B J (2016). The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene, 35(3): 279–289
https://doi.org/10.1038/onc.2015.92 pmid: 25893291
31 Girdwood D, Bumpass D, Vaughan O A, Thain A, Anderson L A, Snowden A W, Garcia-Wilson E, Perkins N D, Hay R T (2003). P300 transcriptional repression is mediated by SUMO modification. Mol Cell, 11(4): 1043–1054
https://doi.org/10.1016/S1097-2765(03)00141-2 pmid: 12718889
32 Goodman R H, Smolik S (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev, 14(13): 1553–1577
pmid: 10887150
33 Hamamori Y, Sartorelli V, Ogryzko V, Puri P L, Wu H Y, Wang J Y, Nakatani Y, Kedes L (1999). Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell, 96(3): 405–413
https://doi.org/10.1016/S0092-8674(00)80553-X pmid: 10025406
34 Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan P E, Hay D A, Martinez F O, Al-Mossawi M H, de Wit J, Vecellio M, Wells C, Wordsworth P, Müller S, Knapp S, Bowness P (2015). CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci USA, 112(34): 10768–10773
https://doi.org/10.1073/pnas.1501956112 pmid: 26261308
35 Hansson M L, Popko-Scibor A E, Saint Just Ribeiro M, Dancy B M, Lindberg M J, Cole P A, Wallberg A E (2009). The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity. Nucleic Acids Res, 37(9): 2996–3006
https://doi.org/10.1093/nar/gkp163 pmid: 19304754
36 Heintzman N D, Stuart R K, Hon G, Fu Y, Ching C W, Hawkins R D, Barrera L O, Van Calcar S, Qu C, Ching K A, Wang W, Weng Z, Green R D, Crawford G E, Ren B (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 39(3): 311–318
https://doi.org/10.1038/ng1966 pmid: 17277777
37 Hong L, Schroth G P, Matthews H R, Yau P, Bradbury E M (1993). Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem, 268(1): 305–314
pmid: 8416938
38 Horton S J, Giotopoulos G, Yun H, Vohra S, Sheppard O, Bashford-Rogers R, Rashid M, Clipson A, Chan W I, Sasca D, Yiangou L, Osaki H, Basheer F, Gallipoli P, Burrows N, Erdem A, Sybirna A, Foerster D, Zhao W, Sustic T, Petrunkina Harrison A, Laurenti E, Okosun J, Hodson D, Wright P, Smith K G, Maxwell P, Fitzgibbon J, Du M Q, Adams D J, Huntly B J P (2017). Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nat Cell Biol, 19(9): 1093–1104
https://doi.org/10.1038/ncb3597 pmid: 28825697
39 Horwitz G A, Zhang K, McBrian M A, Grunstein M, Kurdistani S K, Berk A J (2008). Adenovirus small e1a alters global patterns of histone modification. Science, 321(5892): 1084–1085
https://doi.org/10.1126/science.1155544 pmid: 18719283
40 Huang W C, Chen C C (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol, 25(15): 6592–6602
https://doi.org/10.1128/MCB.25.15.6592-6602.2005 pmid: 16024795
41 Jang E R, Choi J D, Jeong G, Lee J S (2010). Phosphorylation of p300 by ATM controls the stability of NBS1. Biochem Biophys Res Commun, 397(4): 637–643
https://doi.org/10.1016/j.bbrc.2010.05.060 pmid: 20471956
42 Jiang Y, Ortega-Molina A, Geng H, Ying H Y, Hatzi K, Parsa S, McNally D, Wang L, Doane A S, Agirre X, Teater M, Meydan C, Li Z, Poloway D, Wang S, Ennishi D, Scott D W, Stengel K R, Kranz J E, Holson E, Sharma S, Young J W, Chu C S, Roeder R G, Shaknovich R, Hiebert S W, Gascoyne R D, Tam W, Elemento O, Wendel H G, Melnick A M (2017). CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas. Cancer Discov, 7(1): 38–53
https://doi.org/10.1158/2159-8290.CD-16-0975 pmid: 27733359
43 Jin Q, Yu L R, Wang L, Zhang Z, Kasper L H, Lee J E, Wang C, Brindle P K, Dent S Y, Ge K (2011). Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J, 30(2): 249–262
https://doi.org/10.1038/emboj.2010.318 pmid: 21131905
44 Kalkhoven E (2004). CBP and p300: HATs for different occasions. Biochem Pharmacol, 68(6): 1145–1155
https://doi.org/10.1016/j.bcp.2004.03.045 pmid: 15313412
45 Karanam B, Jiang L, Wang L, Kelleher N L, Cole P A (2006). Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation. J Biol Chem, 281(52): 40292–40301
https://doi.org/10.1074/jbc.M608813200 pmid: 17065153
46 Kasper L H, Boussouar F, Ney P A, Jackson C W, Rehg J, van Deursen J M, Brindle P K (2002). A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature, 419(6908): 738–743
https://doi.org/10.1038/nature01062 pmid: 12384703
47 Kasper L H, Fukuyama T, Biesen M A, Boussouar F, Tong C, de Pauw A, Murray P J, van Deursen J M, Brindle P K (2006). Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol, 26(3): 789–809
https://doi.org/10.1128/MCB.26.3.789-809.2006 pmid: 16428436
48 Kawasaki H, Eckner R, Yao T P, Taira K, Chiu R, Livingston D M, Yokoyama K K (1998). Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature, 393(6682): 284–289
https://doi.org/10.1038/30538 pmid: 9607768
49 Kim T K, Hemberg M, Gray J M, Costa A M, Bear D M, Wu J, Harmin D A, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley P F, Kreiman G, Greenberg M E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295): 182–187
https://doi.org/10.1038/nature09033 pmid: 20393465
50 Korzus E (2017). Rubinstein-Taybi Syndrome and Epigenetic Alterations. Adv Exp Med Biol, 978: 39–62
https://doi.org/10.1007/978-3-319-53889-1_3 pmid: 28523540
51 Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705
https://doi.org/10.1016/j.cell.2007.02.005 pmid: 17320507
52 Kraus W L, Manning E T, Kadonaga J T (1999). Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol Cell Biol, 19(12): 8123–8135
https://doi.org/10.1128/MCB.19.12.8123 pmid: 10567538
53 Kung A L, Rebel V I, Bronson R T, Ch’ng L E, Sieff C A, Livingston D M, Yao T P (2000). Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev, 14(3): 272–277
pmid: 10673499
54 Kung A L, Zabludoff S D, France D S, Freedman S J, Tanner E A, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli H U, Petersen F, Eck M J, Bair K W, Wood A W, Livingston D M (2004). Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell, 6(1): 33–43
https://doi.org/10.1016/j.ccr.2004.06.009 pmid: 15261140
55 Kuo H Y, Chang C C, Jeng J C, Hu H M, Lin D Y, Maul G G, Kwok R P, Shih H M (2005). SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci USA, 102(47): 16973–16978
https://doi.org/10.1073/pnas.0504460102 pmid: 16287980
56 Kwok R P, Lundblad J R, Chrivia J C, Richards J P, Bächinger H P, Brennan R G, Roberts S G, Green M R, Goodman R H (1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature, 370(6486): 223–226
https://doi.org/10.1038/370223a0 pmid: 7913207
57 Lasko L M, Jakob C G, Edalji R P, Qiu W, Montgomery D, Digiammarino E L, Hansen T M, Risi R M, Frey R, Manaves V, Shaw B, Algire M, Hessler P, Lam L T, Uziel T, Faivre E, Ferguson D, Buchanan F G, Martin R L, Torrent M, Chiang G G, Karukurichi K, Langston J W, Weinert B T, Choudhary C, de Vries P, Van Drie J H, McElligott D, Kesicki E, Marmorstein R, Sun C, Cole P A, Rosenberg S H, Michaelides M R, Lai A, Bromberg K D (2017). Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature, 550(7674): 128–132
pmid: 28953875
58 Lau O D, Kundu T K, Soccio R E, Ait-Si-Ali S, Khalil E M, Vassilev A, Wolffe A P, Nakatani Y, Roeder R G, Cole P A (2000). HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell, 5(3): 589–595
https://doi.org/10.1016/S1097-2765(00)80452-9 pmid: 10882143
59 Lee Y H, Coonrod S A, Kraus W L, Jelinek M A, Stallcup M R (2005). Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci USA, 102(10): 3611–3616
https://doi.org/10.1073/pnas.0407159102 pmid: 15731352
60 Liu X, Wang L, Zhao K, Thompson P R, Hwang Y, Marmorstein R, Cole P A (2008). The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 451(7180): 846–850
https://doi.org/10.1038/nature06546 pmid: 18273021
61 Madison D L, Yaciuk P, Kwok R P, Lundblad J R (2002). Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem, 277(41): 38755–38763
https://doi.org/10.1074/jbc.M207512200 pmid: 12161448
62 Martincorena I, Campbell P J (2015). Somatic mutation in cancer and normal cells. Science, 349(6255): 1483–1489
https://doi.org/10.1126/science.aab4082 pmid: 26404825
63 Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol, 2(8): 599–609
https://doi.org/10.1038/35085068 pmid: 11483993
64 Michaelides M R, Kluge A, Patane M, Van Drie J H, Wang C, Hansen T M, Risi R M, Mantei R, Hertel C, Karukurichi K, Nesterov A, McElligott D, de Vries P, Langston J W, Cole P A, Marmorstein R, Liu H, Lasko L, Bromberg K D, Lai A, Kesicki E A (2017). Discovery of Spiro Oxazolidinediones as Selective, Orally Bioavailable Inhibitors of p300/CBP Histone Acetyltransferases. ACS Med Chem Lett, 9(1): 28–33
https://doi.org/10.1021/acsmedchemlett.7b00395 pmid: 29348807
65 Morin R D, Mendez-Lago M, Mungall A J, Goya R, Mungall K L, Corbett R D, Johnson N A, Severson T M, Chiu R, Field M, Jackman S, Krzywinski M, Scott D W, Trinh D L, Tamura-Wells J, Li S, Firme M R, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer I M, Zhao E Y, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli J J, Ben-Neriah S, Meissner B, Woolcock B, Boyle M, McDonald H, Tam A, Zhao Y, Delaney A, Zeng T, Tse K, Butterfield Y, Birol I, Holt R, Schein J, Horsman D E, Moore R, Jones S J, Connors J M, Hirst M, Gascoyne R D, Marra M A (2011). Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature, 476(7360): 298–303
https://doi.org/10.1038/nature10351 pmid: 21796119
66 Mullighan C G, Zhang J, Kasper L H, Lerach S, Payne-Turner D, Phillips L A, Heatley S L, Holmfeldt L, Collins-Underwood J R, Ma J, Buetow K H, Pui C H, Baker S D, Brindle P K, Downing J R (2011). CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature, 471(7337): 235–239
https://doi.org/10.1038/nature09727 pmid: 21390130
67 Nguyen U T, Bittova L, Müller M M, Fierz B, David Y, Houck-Loomis B, Feng V, Dann G P, Muir T W (2014). Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods, 11(8): 834–840
https://doi.org/10.1038/nmeth.3022 pmid: 24997861
68 Ogryzko V V, Schiltz R L, Russanova V, Howard B H, Nakatani Y (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87(5): 953–959
https://doi.org/10.1016/S0092-8674(00)82001-2 pmid: 8945521
69 Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 93(9): 2771–2779
pmid: 10216070
70 Park S, Martinez-Yamout M A, Dyson H J, Wright P E (2013). The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Lett, 587(16): 2506–2511
https://doi.org/10.1016/j.febslet.2013.06.051 pmid: 23831576
71 Park S, Stanfield R L, Martinez-Yamout M A, Dyson H J, Wilson I A, Wright P E (2017). Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Natl Acad Sci USA, 114(27): E5335–E5342
https://doi.org/10.1073/pnas.1703105114 pmid: 28630323
72 Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper L H, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty V V, Mullighan C G, Gaidano G, Rabadan R, Brindle P K, Dalla-Favera R (2011). Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature, 471(7337): 189–195
https://doi.org/10.1038/nature09730 pmid: 21390126
73 Peifer M, Fernández-Cuesta L, Sos M L, George J, Seidel D, Kasper L H, Plenker D, Leenders F, Sun R, Zander T, Menon R, Koker M, Dahmen I, Müller C, Di Cerbo V, Schildhaus H U, Altmüller J, Baessmann I, Becker C, de Wilde B, Vandesompele J, Böhm D, Ansén S, Gabler F, Wilkening I, Heynck S, Heuckmann J M, Lu X, Carter S L, Cibulskis K, Banerji S, Getz G, Park K S, Rauh D, Grütter C, Fischer M, Pasqualucci L, Wright G, Wainer Z, Russell P, Petersen I, Chen Y, Stoelben E, Ludwig C, Schnabel P, Hoffmann H, Muley T, Brockmann M, Engel-Riedel W, Muscarella L A, Fazio V M, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman D A, Snijders P J, Cappuzzo F, Ligorio C, Damiani S, Field J, Solberg S, Brustugun O T, Lund-Iversen M, Sänger J, Clement J H, Soltermann A, Moch H, Weder W, Solomon B, Soria J C, Validire P, Besse B, Brambilla E, Brambilla C, Lantuejoul S, Lorimier P, Schneider P M, Hallek M, Pao W, Meyerson M, Sage J, Shendure J, Schneider R, Büttner R, Wolf J, Nürnberg P, Perner S, Heukamp L C, Brindle P K, Haas S, Thomas R K (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet, 44(10): 1104–1110
https://doi.org/10.1038/ng.2396 pmid: 22941188
74 Perissi V, Dasen J S, Kurokawa R, Wang Z, Korzus E, Rose D W, Glass C K, Rosenfeld M G (1999). Factor-specific modulation of CREB-binding protein acetyltransferase activity. Proc Natl Acad Sci USA, 96(7): 3652–3657
https://doi.org/10.1073/pnas.96.7.3652 pmid: 10097092
75 Petrij F, Giles R H, Dauwerse H G, Saris J J, Hennekam R C, Masuno M, Tommerup N, van Ommen G J, Goodman R H, Peters D J (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376(6538): 348–351
https://doi.org/10.1038/376348a0 pmid: 7630403
76 Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, Olzscha H, Monteiro O, Martin S, Philpott M, Tumber A, Filippakopoulos P, Yapp C, Wells C, Che K H, Bannister A, Robson S, Kumar U, Parr N, Lee K, Lugo D, Jeffrey P, Taylor S, Vecellio M L, Bountra C, Brennan P E, O’Mahony A, Velichko S, Müller S, Hay D, Daniels D L, Urh M, La Thangue N B, Kouzarides T, Prinjha R, Schwaller J, Knapp S (2015). Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Res, 75(23): 5106–5119
https://doi.org/10.1158/0008-5472.CAN-15-0236 pmid: 26552700
77 Plotnikov A N, Yang S, Zhou T J, Rusinova E, Frasca A, Zhou M M (2014). Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP. Structure, 22(2): 353–360
https://doi.org/10.1016/j.str.2013.10.021 pmid: 24361270
78 Rack J G M, Lutter T, Kjæreng Bjerga G E, Guder C, Ehrhardt C, Värv S, Ziegler M, Aasland R (2014). The PHD finger of p300 influences its ability to acetylate histone and non-histone targets. J Mol Biol, 426(24): 3960–3972
https://doi.org/10.1016/j.jmb.2014.08.011 pmid: 25158095
79 Radhakrishnan I, Pérez-Alvarado G C, Parker D, Dyson H J, Montminy M R, Wright P E (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell, 91(6): 741–752
https://doi.org/10.1016/S0092-8674(00)80463-8 pmid: 9413984
80 Rebel V I, Kung A L, Tanner E A, Yang H, Bronson R T, Livingston D M (2002). Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA, 99(23): 14789–14794
https://doi.org/10.1073/pnas.232568499 pmid: 12397173
81 Roe J S, Mercan F, Rivera K, Pappin D J, Vakoc C R (2015). BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia. Mol Cell, 58(6): 1028–1039
https://doi.org/10.1016/j.molcel.2015.04.011 pmid: 25982114
82 Rojas J R, Trievel R C, Zhou J, Mo Y, Li X, Berger S L, Allis C D, Marmorstein R (1999). Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature, 401(6748): 93–98
https://doi.org/10.1038/43487 pmid: 10485713
83 Roth S Y, Allis C D (1996). Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell, 87(1): 5–8
https://doi.org/10.1016/S0092-8674(00)81316-1 pmid: 8858142
84 Saint Just Ribeiro M, Hansson M L, Wallberg A E (2007). A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem J, 404(2): 289–298
https://doi.org/10.1042/BJ20061900 pmid: 17300219
85 Sanchez R, Zhou M M (2011). The PHD finger: a versatile epigenome reader. Trends Biochem Sci, 36(7): 364–372
pmid: 21514168
86 Schiltz R L, Mizzen C A, Vassilev A, Cook R G, Allis C D, Nakatani Y (1999). Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem, 274(3): 1189–1192
https://doi.org/10.1074/jbc.274.3.1189 pmid: 9880483
87 Shi X, Hong T, Walter K L, Ewalt M, Michishita E, Hung T, Carney D, Peña P, Lan F, Kaadige M R, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns B R, Ayer D E, Kutateladze T G, Shi Y, Côté J, Chua K F, Gozani O (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 442(7098): 96–99
https://doi.org/10.1038/nature04835 pmid: 16728974
88 Shogren-Knaak M, Ishii H, Sun J M, Pazin M J, Davie J R, Peterson C L (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311(5762): 844–847
https://doi.org/10.1126/science.1124000 pmid: 16469925
89 Solomon B D, Bodian D L, Khromykh A, Mora G G, Lanpher B C, Iyer R K, Baveja R, Vockley J G, Niederhuber J E (2015). Expanding the phenotypic spectrum in EP300-related Rubinstein-Taybi syndrome. Am J Med Genet A, 167A(5): 1111–1116
https://doi.org/10.1002/ajmg.a.36883 pmid: 25712426
90 Stein R W, Corrigan M, Yaciuk P, Whelan J, Moran E (1990). Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol, 64(9): 4421–4427
pmid: 2143544
91 Szerlong H J, Prenni J E, Nyborg J K, Hansen J C (2010). Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. J Biol Chem, 285(42): 31954–31964
https://doi.org/10.1074/jbc.M110.148718 pmid: 20720004
92 Tanaka Y, Naruse I, Hongo T, X u M, Nakahata T, Maekawa T, Ishii S (2000). Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev, 95(1-2): 133–145
https://doi.org/10.1016/S0925-4773(00)00360-9 pmid: 10906457
93 Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroishi T, Ishii S (1997). Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci USA, 94(19): 10215–10220
https://doi.org/10.1073/pnas.94.19.10215 pmid: 9294190
94 Tang Z, Chen W Y, Shimada M, Nguyen U T, Kim J, Sun X J, Sengoku T, McGinty R K, Fernandez J P, Muir T W, Roeder R G (2013). SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell, 154(2): 297–310
https://doi.org/10.1016/j.cell.2013.06.027 pmid: 23870121
95 Tessarz P, Kouzarides T (2014). Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol, 15(11): 703–708
https://doi.org/10.1038/nrm3890 pmid: 25315270
96 Thompson P R, Kurooka H, Nakatani Y, Cole P A (2001). Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J Biol Chem, 276(36): 33721–33729
https://doi.org/10.1074/jbc.M104736200 pmid: 11445580
97 Thompson P R, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder R G, Wong J, Levrero M, Sartorelli V, Cotter R J, Cole P A (2004). Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol, 11(4): 308–315
https://doi.org/10.1038/nsmb740 pmid: 15004546
98 Trievel R C, Rojas J R, Sterner D E, Venkataramani R N, Wang L, Zhou J, Allis C D, Berger S L, Marmorstein R (1999). Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA, 96(16): 8931–8936
https://doi.org/10.1073/pnas.96.16.8931 pmid: 10430873
99 Tse C, Sera T, Wolffe A P, Hansen J C (1998). Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol, 18(8): 4629–4638
https://doi.org/10.1128/MCB.18.8.4629 pmid: 9671473
100 Vempati R K, Jayani R S, Notani D, Sengupta A, Galande S, Haldar D (2010). p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem, 285(37): 28553–28564
https://doi.org/10.1074/jbc.M110.149393 pmid: 20587414
101 Visel A, Blow M J, Li Z, Zhang T, Akiyama J A, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin E M, Pennacchio L A (2009). ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 457(7231): 854–858
https://doi.org/10.1038/nature07730 pmid: 19212405
102 Vo N, Goodman R H (2001). CREB-binding protein and p300 in transcriptional regulation. J Biol Chem, 276(17): 13505–13508
https://doi.org/10.1074/jbc.R000025200 pmid: 11279224
103 Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong C C L, Su H, Zhou T, Xia H (2017). mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. Molecular cell 68, 323–335 e326.
104 Wang F, Marshall C B, Ikura M (2013a). Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci, 70(21): 3989–4008
https://doi.org/10.1007/s00018-012-1254-4 pmid: 23307074
105 Wang Q E, Han C, Zhao R, Wani G, Zhu Q, Gong L, Battu A, Racoma I, Sharma N, Wani A A (2013b). p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res, 41(3): 1722–1733
https://doi.org/10.1093/nar/gks1312 pmid: 23275565
106 Wang Z, Zang C, Cui K, Schones D E, Barski A, Peng W, Zhao K (2009). Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell, 138(5): 1019–1031
https://doi.org/10.1016/j.cell.2009.06.049 pmid: 19698979
107 Whyte P, Williamson N M, Harlow E (1989). Cellular targets for transformation by the adenovirus E1A proteins. Cell, 56(1): 67–75
https://doi.org/10.1016/0092-8674(89)90984-7 pmid: 2521301
108 Xu L, Cheng A, Huang M, Zhang J, Jiang Y, Wang C, Li F, Bao H, Gao J, Wang N, Liu J, Wu J, Wong C C L, Ruan K (2017). Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein. FEBS J, 284(20): 3422–3436
https://doi.org/10.1111/febs.14198 pmid: 28815970
109 Xu W, Chen H, Du K, Asahara H, Tini M, Emerson B M, Montminy M, Evans R M (2001). A transcriptional switch mediated by cofactor methylation. Science, 294(5551): 2507–2511
https://doi.org/10.1126/science.1065961 pmid: 11701890
110 Yao T P, Oh S P, Fuchs M, Zhou N D, Ch’ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 93(3): 361–372
https://doi.org/10.1016/S0092-8674(00)81165-4 pmid: 9590171
111 Yee S P, Branton P E (1985). Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology, 147(1): 142–153
https://doi.org/10.1016/0042-6822(85)90234-X pmid: 2932846
112 Yuan L W, Soh J W, Weinstein I B (2002). Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim Biophys Acta, 1592(2): 205–211
https://doi.org/10.1016/S0167-4889(02)00327-0 pmid: 12379484
113 Zeng L, Zhang Q, Gerona-Navarro G, Moshkina N, Zhou M M (2008). Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300. Structure, 16(4): 643–652
https://doi.org/10.1016/j.str.2008.01.010 pmid: 18400184
114 Zhang J, Vlasevska S, Wells V A, Nataraj S, Holmes A B, Duval R, Meyer S N, Mo T, Basso K, Brindle P K, Hussein S, Dalla-Favera R, Pasqualucci L (2017a). The CREBBP Acetyltransferase Is a Haploinsufficient Tumor Suppressor in B-cell Lymphoma. Cancer Discov, 7(3): 322–337
https://doi.org/10.1158/2159-8290.CD-16-1417 pmid: 28069569
115 Zhang R, Erler J, Langowski J (2017b). Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter-nucleosome Interaction. Biophys J, 112(3): 450–459
https://doi.org/10.1016/j.bpj.2016.11.015 pmid: 27931745
116 Zhong J, Ding L, Bohrer L R, Pan Y, Liu P, Zhang J, Sebo T J, Karnes R J, Tindall D J, van Deursen J, Huang H (2014). p300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate tumorigenesis. Cancer Res, 74(6): 1870–1880
https://doi.org/10.1158/0008-5472.CAN-13-2485 pmid: 24480624
117 Zhu P, Li G (2016). Structural insights of nucleosome and the 30-nm chromatin fiber. Curr Opin Struct Biol, 36: 106–115
https://doi.org/10.1016/j.sbi.2016.01.013 pmid: 26872330
118 Zucconi B E, Luef B, Xu W, Henry R A, Nodelman I M, Bowman G D, Andrews A J, Cole P A (2016). Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112. Biochemistry, 55(27): 3727–3734
https://doi.org/10.1021/acs.biochem.6b00480 pmid: 27332697
[1] Madhuchhanda Das, Harischandra Sripathy Prakash, Monnanda Somaiah Nalini. Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J. Graham) Dalzell.[J]. Front. Biol., 2017, 12(2): 151-162.
[2] Ayesha Siddiqa,Yasir Rehman,Shahida Hasnain. Rhizoplane microbiota of superior wheat varieties possess enhanced plant growth-promoting abilities[J]. Front. Biol., 2016, 11(6): 481-487.
[3] Xin WANG, Bing YE. Transcriptional regulators that differentially control dendrite and axon development[J]. Front Biol, 2012, 7(4): 292-296.
[4] Julhash U. KAZI. The mechanism of protein kinase C regulation[J]. Front Biol, 2011, 6(4): 328-336.
[5] George M. CARMAN. The discovery of the fat-regulating phosphatidic acid phosphatase gene[J]. Front Biol, 2011, 6(3): 172-176.
[6] James A. BIRCHLER, Lin SUN, Ryan DONOHUE, Abhijit SANYAL, Weiwu XIE. Implications of the gene balance hypothesis for dosage compensation[J]. Front Biol, 2011, 6(2): 118-124.
[7] Guoxin WANG, Suping LI, Feifei WANG, Shufang HUANG, Xian LI, Wei XIONG, Biliang ZHANG. RNAi screen to identify protein phosphatases that regulate the NF-kappaB signaling[J]. Front Biol, 2010, 5(3): 263-271.
[8] Xiangcheng MI, Jihua HOU, . Regeneration pattern analysis of Quercus liaotungensis in a temperate forest using two-dimensional wavelet analysis[J]. Front. Biol., 2009, 4(4): 491-502.
[9] C. Abdul JALEEL, Changxing ZHAO, Sedghi MOHAMED, Hameed Jasim AL-JUBURI, Helal Ragab MOUSSA, M. GOMATHINAYAGAM, R. PANNEERSELVAM, . Alterations in sucrose metabolizing enzyme activities and total phenol content of Curcuma longa L. as affected by different triazole compounds[J]. Front. Biol., 2009, 4(4): 419-423.
[10] TANG Yunming, CEN Liang, LI Changchun, XU Min, LUO Ying, LU Cheng. Purification and properties of alkaline phosphatase of silkworm Bombyx mori[J]. Front. Biol., 2006, 1(3): 246-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed