Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    0, Vol. Issue () : 359-368    https://doi.org/10.1007/s11708-009-0053-6
Research articles
CO capture and sequestration source-sink match optimization in Jing-Jin-Ji region of China
Zhong ZHENG , Dan GAO , Linwei MA , Zheng LI , Weidou NI ,
State Key Lab of Power Systems and Department of Thermal Engineering, Tsinghua University, Beijing 100084, China;
 Download: PDF(469 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Carbon dioxide capture and sequestration (CCS) is considered to be an important option for climate change mitigation. A key problem for the implementation of CCS technology is the source-sink match design and optimization when considering both economic and environmental requirement. This paper presents a generic-optimization-based model for the strategic planning and design of future CCS source-sink matching. The features and capabilities of the model are illustrated through a detailed case study for the Jing-Jin-Ji (Beijing, Tianjin and Hebei Province) region in China. It shows how the model helps make a compromise in arriving at a strategic decision for CCS source-sink matching by providing the tradeoff frontiers between economic and environmental performance, and the features of match solutions with the best economic performance or with the best environmental performance.
Keywords CO2 capture and sequestration      China      source-sink match      tradeoff frontiers      multi-objective optimization      
Issue Date: 05 September 2009
 Cite this article:   
Zhong ZHENG,Dan GAO,Linwei MA, et al. CO capture and sequestration source-sink match optimization in Jing-Jin-Ji region of China[J]. Front. Energy, 0, (): 359-368.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-009-0053-6
https://academic.hep.com.cn/fie/EN/Y0/V/I/359
Meng K C, Williams R H, Celia M A. Opportunities for low-cost CO2 storage demonstration projects in China. Energy Policy, 2007, 35(4): 2368–2378

doi: 10.1016/j.enpol.2006.08.016
Figueroa J D, Fout T, Plasynski S, Mcilvrieed H, Srivastava R D. Advances in CO2 capture technology—The U.S. Department of Energy’sCarbon Sequestration Program. InternationalJournal of Greenhouse Gas Control, 2008, 2(1): 9–20

doi: 10.1016/S1750-5836(07)00094-1
Kuuskraa V. Reviewand evaluation of the CO2 capture project bythe Technology Advisory Board. In: Thomas D Ced. CarbonDioxide Capture for Storage in Deep Geologic Formations—Resultsfrom the CO2 Capture Project, Volumn I. London: ElsevierScience Ltd, 2005, 37–46
Litynski J T, Plasynski S, Mcllvried H G, Mahoney C, Srivastava R D. The United States Departmentof Energy’s regional carbon sequestration partnerships programvalidation phase. Environment International, 2008, 34(1): 127–138

doi: 10.1016/j.envint.2007.07.005
Benson S M. Overview of geologic storage of CO2. In: Thomas D Ced. Carbon Dioxide Capture for Storagein Deep Geologic Formations—Results from the CO2 Capture Project, Volumn II. London: Elsevier Science Ltd, 2005, 665–672
Melien T. Economicand cost analysis for CO2 capture costs inthe CO2 capture project scenarios. In: Thomas D Ced. Carbon Dioxide Capture for Storagein Deep Geologic Formations—Results from the CO2 Capture Project, Volumn I. London: Elsevier Science Ltd, 2005, 47–87
Svensson R, Odenberger M, Johnsson F, Stromberg L. Transportationsystems for CO2— application to carboncapture and storage. Energy Conversionand Management, 2004, 45(15,16): 2343–2353
Ogden J M. Conceptual design of optimized fossil energy systems with captureand sequestration of carbon dioxide. Reportto US DOE, Princeton University, 2004
Heddle G, Herzog H, Klett M. The economics of CO2 storage. Report from MIT LFEE, 2003
Jakobsen J P, Tangen G, Nordbø Ø, Mølnvik M J. Methodology for CO2 chain analysis. International Journalof Greenhouse Gas Control, 20082(4): 439–447
Lu Huapu, Mao Qizhi, Li Zheng, He Kebin, Shuai Shijin, Zhang Xiliang. Sustainable Urban Mobility in Rapid Urbanization. Beijing: China Railway Publication House, 2008, 29–37
National Bureau of Statistics of China. China Statistical Yearbook 2008, Beijing: China Statistics Press, 2008
Biegler L T, Grossmann I E, Westerberg A W. Systematic Methods of Chemical Process Design. Englewood Cliff: Prentice Hall, 1997
Liu Pei, Gerogiorgis D I, Pistikopoulos E N. Modeling and optimization of polygenerationenergy systems. Catalysis Today, 2007, 127(1–4): 347–359
Hugo A, Rutter P, Postikopoulos S, Amorelli A, Zoia G. Hydrogen infrastructure strategicplanning using multi-objective optimization. International Journal of Hydrogen Energy, 2005, 30(15): 1523–1534

doi: 10.1016/j.ijhydene.2005.04.017
Akimoto K, Kotsubo H, Asami T, Li X C, Uno M, Tomoda T, Ohsumi T. Evaluation of carbon dioxidesequestration in japan with a mathematical model. Energy, 2004, 29(9,10): 1537–1549
Dooley J J, Dahowski R T, Davidson C L, Bachu S, Gupta N, Gale J. ACO2-storage supply curve for North Americaand its’ implementations for the deployment of carbon dioxidecapture and storage systems. In: Gale J, Kaya Y eds. Proceedings ofthe 6th International Conference on Greenhouse Gas Control Technologies,Cairns, Australia: CSIRO Publishing, 2002
IEA. IEA GHG CO2 Emissions Database v.2006. Cheltenham, 2006
Bai Bing, Li Xiaochun, Liu Yanfeng, Zhang Yong. Preliminarystudy on CO2 industrial point sources and theirdistribution in China. Chinese Journalof Rock Mechanics and Engineering, 2006, 25(Supp.1): 2918–2923
Li Guoyu, Lv Minggang. Atlas of China’s PetroliferousBasins. Beijing: Petroleum Industry Press, 2002, 55–89
Li Yong. Source-sink match model for carbon capture & storage and itsapplication–case study in Hebei Province. Dissertation for Doctoral Degree. Beijing: Tsinghua University, 2008, 101–123
Hendriks C, Graus W, van Bergen F. Global Carbon Dioxide Storage Potential and Costs. TechnicalReport. ECOFYS in cooperation with TNO,the Netherlands, 2004, 14–25
Li Xiaochun, Liu Yanfeng, Bai Bing, Fang Zhiming. Rankingand screening of CO2 saline aquifer storagezones in China. Chinese Journal of RockMechanics and Engineering, 2006, 25(5): 963–968
Liu Yanfeng, Li Xiaochun, Bai Bing. Preliminary estimation of CO2 storagecapacity of coalbeds in China. ChineseJournal of Rock Mechanics and Engineering, 2005, 24(16): 2947–2952
[1] Qiao MA, Shan WANG, Yan FU, Wenlong ZHOU, Mingwei SHI, Xueting PENG, Haodong LV, Weichen ZHAO, Xian ZHANG. China’s policy framework for carbon capture, utilization and storage: Review, analysis, and outlook[J]. Front. Energy, 2023, 17(3): 400-411.
[2] Hassan HAJABDOLLAHI, Mohammad SHAFIEY DEHAJ, Babak MASOUMPOUR, Mohammad ATAEIZADEH. Optimal design analysis of a tubular heat exchanger network with extended surfaces using multi-objective constructal optimization[J]. Front. Energy, 2022, 16(5): 862-875.
[3] Long GU, Xingkang SU. Latest research progress for LBE coolant reactor of China initiative accelerator driven system project[J]. Front. Energy, 2021, 15(4): 810-831.
[4] Xi ZHANG, Yong GENG, Yen Wah TONG, Harn Wei KUA, Huijuan DONG, Hengyu PAN. Trends and driving forces of low-carbon energy technology innovation in China’s industrial sectors from 1998 to 2017: from a regional perspective[J]. Front. Energy, 2021, 15(2): 473-486.
[5] Sheng ZHOU, Maosheng DUAN, Zhiyi YUAN, Xunmin OU. Peak CO2 emission in the region dominated by coal use and heavy chemical industries: a case study of Dezhou city in China[J]. Front. Energy, 2020, 14(4): 740-758.
[6] Zhong HUANG, Lei DENG, Defu CHE. Development and technical progress in large-scale circulating fluidized bed boiler in China[J]. Front. Energy, 2020, 14(4): 699-714.
[7] Junjie LI, Yajun TIAN, Xiaohui YAN, Jingdong YANG, Yonggang WANG, Wenqiang XU, Kechang XIE. Approach and potential of replacing oil and natural gas with coal in China[J]. Front. Energy, 2020, 14(2): 419-431.
[8] Hailin WANG, Jiankun HE. China’s pre-2020 CO2 emission reduction potential and its influence[J]. Front. Energy, 2019, 13(3): 571-578.
[9] Hongbo REN, Yinlong LU, Qiong WU, Xiu YANG, Aolin ZHOU. Multi-objective optimization of a hybrid distributed energy system using NSGA-II algorithm[J]. Front. Energy, 2018, 12(4): 518-528.
[10] Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO. Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world[J]. Front. Energy, 2018, 12(3): 466-480.
[11] Hancheng DAI, Yang XIE, Haibin ZHANG, Zhongjue YU, Wentao WANG. Effects of the US withdrawal from Paris Agreement on the carbon emission space and cost of China and India[J]. Front. Energy, 2018, 12(3): 362-375.
[12] Ping JIANG, Hongjia DONG, Yun ZHU, Adila ALIMUJIANG, Zhenhua ZHANG, Weichun MA. Individual environmental behavior: A key role in building low-carbon communities in China[J]. Front. Energy, 2018, 12(3): 456-465.
[13] Deepak KUMAR, D. K. MOHANTA, M. Jaya Bharata REDDY. Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission[J]. Front. Energy, 2015, 9(1): 91-105.
[14] Ramin ROSHANDEL, Majid ASTANEH, Farzin GOLZAR. Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases[J]. Front. Energy, 2015, 9(1): 106-114.
[15] Arash Hasssanpour ISFAHANI, Amirhossein Haji-Seyed BOROUJERDI, Saeed HASANZADEH. Multi-objective design optimization of a large-scale direct-drive permanent magnet generator for wind energy conversion systems[J]. Front. Energy, 2014, 8(2): 182-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed