Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2011, Vol. 5 Issue (4) : 367-375    https://doi.org/10.1007/s11708-011-0170-x
RESEARCH ARTICLE
Unified cycle model of a class of internal combustion engines and their optimum performance characteristics
Shiyan ZHENG()
College of Physics and Information Engineering, Quanzhou Normal University, Quanzhou 362000, China
 Download: PDF(277 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The unified cycle model of a class of internal combustion engines is presented, in which the influence of the multi-irreversibilities mainly resulting from the adiabatic processes, finite-time processes and heat leak loss through the cylinder wall on the performance of the cycle are taken into account. Based on the thermodynamic analysis method, the mathematical expressions of the power output and efficiency of the cycle are calculated and some important characteristic curves are given. The influence of the various design parameters such as the high-low pressure ratio, the high-low temperature ratio, the compression and expansion isentropic efficiencies etc. on the performance of the cycle is analyzed. The optimum criteria of some important parameters such as the power output, efficiency and pressure ratio are derived. The results obtained from this unified cycle model are very general and useful, from which the optimal performance of the Atkinson, Otto, Diesel, Dual and Miller heat engines and some new heat engines can be directly derived.

Keywords internal combustion engine      irreversibility      power output      efficiency      optimization     
Corresponding Author(s): ZHENG Shiyan,Email:syzheng137@163.com   
Issue Date: 05 December 2011
 Cite this article:   
Shiyan ZHENG. Unified cycle model of a class of internal combustion engines and their optimum performance characteristics[J]. Front Energ, 2011, 5(4): 367-375.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-011-0170-x
https://academic.hep.com.cn/fie/EN/Y2011/V5/I4/367
Fig.1  - diagram of an irreversible internal combustion engine
Fig.2  - curves of the irreversible Diesel, Atkinson, Otto, Miller and Dual heat engines for (, )=(, ), (, ), (, ), (, 800 K) and (2400 K, ), respectively (The solid, dashed, short dash-dot, long dash-dot and dot curves correspond to the Diesel, Atkinson, Otto, Miller and Dual cycles, respectively. Curves a, b and c correspond the compression and expansion isentropic efficiencies of , respectively)
Fig.3  - curves of the irreversible Diesel, Atkinson, Otto, Miller and Dual heat engines. (The solid, dashed, short dash-dot, long dash-dot and dot curves correspond to the Diesel, Atkinson, Otto, Miller and Dual cycles, respectively. The values of parameters are the same as those used in Fig. 2)
Fig.4  - curves of the irreversible Diesel, Atkinson, Otto, Miller and Dual heat engines for (, )=(, ), (, ), (, ), (, 1200 K) and (2400 K, ) respectively (The solid, dashed, short dash-dot, long dash-dot and dot curves correspond to the Diesel, Atkinson, Otto, Miller and Dual cycles, respectively. Curves a and b correspond the compression and expansion isentropic efficiencies of , respectively. The values of other parameters are the same as those used in Fig. 2)
Fig.5  - curves of the irreversible internal combustion engine (The dashed, short dash-dot and dot curves correspond to the Atkinson, Otto and Dual cycles, respectively. Curves a correspond the parameters and , curves b correspond the parameters and and curves c correspond the parameters and , respectively. The values of other parameters are the same as those used in Fig. 2)
Fig.6  - curves of the irreversible Diesel and Miller heat engines for the parameters and (The solid and long dash-dot curves correspond to the Diesel and Miller cycles, respectively. Curves a and b correspond the parameters , respectively. The values of other parameters are the same as those used in Fig. 4)
Fig.7  Influences of on - curves of the irreversible Diesel, Atkinson, Otto, Miller and Dual heat engines for the parameters (The solid, dashed, short dash-dot, long dash-dot and dot curves correspond to the Diesel, Atkinson, Otto, Miller and Dual cycles, respectively. The values of other parameters are the same as those used in Fig. 2)
1 Wu C, Chen L, Chen J. Recent Advances in Finite-Time Thermodynamics. New York: Nova Science Publishers, Inc., 1999
2 Bejan A. Advanced Engineering Thermodynamics. 2nd ed. New York: Wiley, 1996
3 Moran M J, Shapiro H N. Fundamentals of Engineering Thermodynamics. 2nd ed. New York: Wiley, 1992
4 Mozurkewich M, Stephen B. Optimal paths for thermodynamic systems: The ideal Otto cycle. Journal of Applied Physics , 1982, 53(1): 34-42
doi: 10.1063/1.329894
5 Angulo-Brown F, Rocha-Martínez J, Navarrete-González T D, Navarrete- González T. A non-endoreversible Otto cycle model: improving power output and efficiency. Journal of Physics D, Applied Physics , 1996, 29(1): 80-83
doi: 10.1088/0022-3727/29/1/014
6 Chen L, Wu C, Sun F R, Cao S. Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle. Energy Conversion and Management , 1998, 39(7): 643-648
doi: 10.1016/S0196-8904(97)10003-6
7 Bhattacharyya S. Optimizing an irreversible Diesel cycle—fine tuning of compression ratio and cut-off ratio. Energy Conversion and Management , 2000, 41(8): 847-854
doi: 10.1016/S0196-8904(99)00153-3
8 Akash B. Effect of heat transfer on the performance of an air-standard Diesel cycle. International Communications in Heat and Mass Transfer , 2001, 28(1): 87-95
doi: 10.1016/S0735-1933(01)00216-0
9 Ge Y L, Chen L G, Sun F R, Wu C. Reciprocating heat-engine cycles. Applied Energy , 2005, 81(4): 397-408
doi: 10.1016/j.apenergy.2004.09.007
10 Chen J C, Zhao Y R, He J Z. Optimization criteria for the important parameters of an irreversible Otto heat-engine. Applied Energy , 2006, 83(3): 228-238
doi: 10.1016/j.apenergy.2005.01.011
11 Zhao Y R, Lin B H, Zhang Y, Chen J C.Performance analysis and parametric optimum design of an irreversible Diesel heat engine. Energy Conversion and Management , 2006, 47(18,19): 3383-3392
12 Zhao Y R, Chen J C. Performance analysis and parametric optimum criteria of an irreversible Atkinson heat-engine. Applied Energy , 2006, 83(8): 789-800
doi: 10.1016/j.apenergy.2005.09.007
13 Zhao Y R, Chen J C. An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis. International Journal of Thermal Sciences , 2007, 46(6): 605-613
doi: 10.1016/j.ijthermalsci.2006.04.005
14 Zhao Y R, Chen J C. Performance analysis of an irreversible Miller heat engine and its optimum criteria. Applied Thermal Engineering , 2007, 27(11,12): 2051-2058
15 Chen L G, Wu C, Sun F R.Cooling load versus cop characteristics for an irreversible air refrigeration cycle. Energy Conversion and Management , 1998, 39(1,2): 117-125
16 Aragón-González G, Canales-Palma A, León-Galicia A. Maximum irreversible work and efficiency in power cycles. Journal of Physics. D, Applied Physics , 2000, 33(11): 1403-1409
doi: 10.1088/0022-3727/33/11/321
17 Curzon F, Ahlborn B. Efficiency of a Carnot engine at maximum power output. American Journal of Physics , 1975, 43(1): 22-24
doi: 10.1119/1.10023
18 Salamon P, Nitzan A. Finite time optimizations of a Newton’s law Carnot cycle. Journal of Chemical Physics , 1981, 74(6): 3546-3560
doi: 10.1063/1.441482
19 Chen J C, Yan Z J. Unified description of endoreversible cycles. Physical Review A: General Physics , 1989, 39(8): 4140-4147
doi: 10.1103/PhysRevA.39.4140 pmid:9901741
20 Angulo-Brown F, Fernández-Betanzos J, Díaz-Pico C A. Compression ratio of an optimized air standard Otto-cycle model. European Journal of Physics , 1994, 15(1): 38-42
doi: 10.1088/0143-0807/15/1/007
21 Chen L G, Ge Y L, Sun F R. Unified thermodynamic description and optimization for a class of irreversible reciprocating heat engine cycles. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering , 2008, 222(8): 1489-1500
doi: 10.1243/09544070JAUTO827
22 Ebrahimi R. Performance optimization of a Diesel cycle with specific heat ratio. Journal of American Science , 2010, 6(1): 157-161
[1] Mohammad Reza NAZEMZADEGAN, Alibakhsh KASAEIAN, Somayeh TOGHYANI, Mohammad Hossein AHMADI, R. SAIDUR, Tingzhen MING. Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and bound method and MOPSO algorithm[J]. Front. Energy, 2020, 14(3): 649-665.
[2] Philip Kofi ADOM, Michael Owusu APPIAH, Mawunyo Prosper AGRADI. Does financial development lower energy intensity?[J]. Front. Energy, 2020, 14(3): 620-634.
[3] Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage[J]. Front. Energy, 2020, 14(3): 570-577.
[4] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[5] Jidong WANG, Boyu CHEN, Peng LI, Yanbo CHE. Distributionally robust optimization of home energy management system based on receding horizon optimization[J]. Front. Energy, 2020, 14(2): 254-266.
[6] Pei LI, Guotian CAI, Yuntao ZHANG, Shangjun KE, Peng WANG, Liping GAO. Multi-objective optimal allocation strategy for the energy internet in Huangpu District, Guangzhou, China[J]. Front. Energy, 2020, 14(2): 241-253.
[7] Aeidapu MAHESH, Kanwarjit Singh SANDHU. A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm[J]. Front. Energy, 2020, 14(1): 139-151.
[8] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[9] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[10] Junjie MA, Xiang CHEN, Zongchang QU. Structural optimal design of a swing vane compressor[J]. Front. Energy, 2019, 13(4): 764-769.
[11] Zhixiang WU, Lingen CHEN, Yanlin GE, Fengrui SUN. Optimization of the power, efficiency and ecological function for an air-standard irreversible Dual-Miller cycle[J]. Front. Energy, 2019, 13(3): 579-589.
[12] Dianbo XIN, Shuliang HUANG, Song YIN, Yuping DENG, Wenqiang ZHANG. Experimental investigation on oil-gas separator of air-conditioning systems[J]. Front. Energy, 2019, 13(2): 411-416.
[13] Mohammad H. AHMADI, Mohammad-Ali AHMADI, Esmaeil ABOUKAZEMPOUR, Lavinia GROSU, Fathollah POURFAYAZ, Mokhtar BIDI. Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance[J]. Front. Energy, 2019, 13(2): 399-410.
[14] Chongzhe ZOU, Huayi FENG, Yanping ZHANG, Quentin FALCOZ, Cheng ZHANG, Wei GAO. Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation[J]. Front. Energy, 2019, 13(2): 284-295.
[15] B. TUDU, K. K. MANDAL, N. CHAKRABORTY. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration[J]. Front. Energy, 2019, 13(2): 269-283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed