Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2015, Vol. 9 Issue (4) : 486-494    https://doi.org/10.1007/s11708-015-0368-4
RESEARCH ARTICLE
Performance, emission and combustion characteristics of CI engine fuelled with diesel and hydrogen
R. Senthil KUMAR(),M. LOGANATHAN,E. James GUNASEKARAN
Department of Mechanical Engineering, Annamalai University, Chidambaram 608002, India
 Download: PDF(1065 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrogen (H2) is being considered as a primary automotive fuel and as a replacement for conventional fuels. Some of the desirable properties, like high flame velocity, high calorific value motivate us to use hydrogen fuel as a dual fuel mode in diesel engine. In this experiment, hydrogen was inducted in the inlet manifold with intake air. The experiments were conducted on a four stroke, single cylinder, water cooled, direct injection (DI), diesel engine at a speed of 1500 r/min. Hydrogen was stored in a high pressure cylinder and supplied to the inlet manifold through a water-and-air-based flame arrestor. A pressure regulator was used to reduce the cylinder pressure from 140 bar to 2 bar. The hydrogen was inducted with a volume flow rate of 4l pm, 6l pm and 8l pm, respectively by a digital volume flow meter. The engine performance, emission and combustion parameters were analyzed at various flow rates of hydrogen and compared with diesel fuel operation. The brake thermal efficiency (BTE) was increased and brake specific fuel consumption (BSFC) decreased for the hydrogen flow rate of 8l pm as compared to the diesel and lower volume flow rates of hydrogen. The hydrocarbon (HC) and carbon monoxide (CO) were decreased and the oxides of nitrogen (NOx) increased for higher volume flow rates of hydrogen compared to diesel and lower volume flow rates of hydrogen. The heat release rate and cylinder pressure was increased for higher volume flow rates of hydrogen compared to diesel and lower volume flow rates of hydrogen.

Keywords hydrogen      brake thermal efficiency      crank angle      compressed ignition (CI)     
Corresponding Author(s): R. Senthil KUMAR   
Just Accepted Date: 28 May 2015   Online First Date: 06 July 2015    Issue Date: 04 November 2015
 Cite this article:   
R. Senthil KUMAR,M. LOGANATHAN,E. James GUNASEKARAN. Performance, emission and combustion characteristics of CI engine fuelled with diesel and hydrogen[J]. Front. Energy, 2015, 9(4): 486-494.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0368-4
https://academic.hep.com.cn/fie/EN/Y2015/V9/I4/486
Properties Hydrogen
Auto ignition temperature/K 858
Minimum ignition energy/MJ 0.02
Flammability limits (volume in air)/% 4–75
Stoichiometric mixture (volume in air)/% 29.53
Molecular weight/g 2.016
Density/(kg·cm−3) 0.0838
Mass ratio 34.4
Flame velocity/(cm·s−1) 270
Specific gravity 0.091
Adiabatic flame temperature/K 2318
Quenching gap/cm 0.064
Heat of combustion/(kJ·kg−1) 120000
Octane number 130
Cetane number
Boiling point/K 20.27
Tab.1  Properties of hydrogen
Hydrogen flow rate/(L·min −1) Percentage of H2 in intake mixture/% Percentage of air in intake mixture/%
4 1.2 98.8
6 1.8 98.2
8 2.5 97.5
Tab.2  Percentage of H2 in intake mixture
Fig.1  Percentage of diesel replaced for different H2 flow rates
Fig.2  Percentage of energy released by H2 for different H2 flow rates
Measurement Accuracy Uncertainty/% Measurement technique
Load ±10 N ±0.2 Strain gauge type load cell
Speed ±10 r/min ±0.1 Magnetic pickup principle
Weighing instrument ±0.1 g ±1 Mass measurement
Time ±0.1 s ±0.2 Manual stop watch
CO ±0.02% ±0.2 NDIR technique
HC ±10 ppm ±0.1 NDIR technique
NOx ±12 ppm ±0.2 NDIR technique
Exhaust gas temperature (EGT) indicator ±1 C ±0.15 K-type thermocouple
Pressure pick up ±1 bar ±0.15 Magnetic pickup principle
Crank angle encoder ±1° ±0.2 Magnetic pickup principle
Tab.3  Average uncertainties of some measured and calculated parameters
Fig.3  Schematic of experimental setup
Fig.4  Photographic view of experimental setup
Engine make Kirloskar AV-1
Type Vertical, single cylinder, water cooled
Max. power 3.7 kW at 1500 r/min
Displacement 550 CC
Bore × Stroke 80 mm × 110 mm
Compression ratio 16.5:1
Fuel injection timing 21° BTDC
Loading device Eddy current dynamometer
Tab.4  Specification of the engine
Fig.5  Hydrogen flow line
Fig.6  Comparison of BTE
Fig.7  Comparison of BSFC
Fig.8  Comparison of NOx
Fig.9  Comparison of HC
Fig.10  Comparison of CO
Fig.11  Comparison of EGT
Fig.12  Comparison of cylinder pressure
Fig.13  Comparison of heat release
1 Verhelst  S, Sierens  R. Aspects concerning the optimization of a hydrogen fueled engine. International Journal of Hydrogen Energy, 2001, 26(9): 981–985
https://doi.org/10.1016/S0360-3199(01)00031-3
2 Das  L M. Hydrogen engine: research and development (R & D) programmes in India Institute of Technology (IIT). International Journal of Hydrogen Energy, 2002, 27(9): 953–965
https://doi.org/10.1016/S0360-3199(01)00178-1
3 Fulton  J, Lynch  F, Marmora  R. Hydrogen for reducing emissions from alternative fuel vehicles. SAE Paper, 1993, Paper No. 931813
4 Das  L M. Near-term introduction of hydrogen engines for automotive and agriculture application. International Journal of Hydrogen Energy, 2002, 27(5): 479–487
https://doi.org/10.1016/S0360-3199(01)00163-X
5 Ravi  M, Rao  A N, Ramaswamy  M C, Jagadeesan  T R. Experimental investigation on dual fuel operation of hydrogen in a C.I. engine. In: Proceedings of the National Conference on I.C. Engines and Combustion, Indian Institute of Petroleum. Dehradun, India, 1992, 86–91
6 Barreto  L, Makihira  A, Riahi  K. The hydrogen economy in the 21st century a sustainable development scenario. International Journal of Hydrogen Energy, 2003, 28(3): 267–284
https://doi.org/10.1016/S0360-3199(02)00074-5
7 Buckel  J W, Chandra  S. Hot wire ignition of hydrogen—oxygen mixture. International Journal of Hydrogen Energy, 1996, 21(1): 39–44
https://doi.org/10.1016/0360-3199(94)00107-B
8 Haragopala Rao  B, Shrivastava  K N, Bhakta  H N. Hydrogen for dual fuel engine operation. International Journal of Hydrogen Energy, 1983, 8(5): 381–384
https://doi.org/10.1016/0360-3199(83)90054-X
9 Yi  H S, Min  K, Kim  E S. The optimised mixture formation for hydrogen fuelled engines. International Journal of Hydrogen Energy, 2000, 25(7): 685–690
https://doi.org/10.1016/S0360-3199(99)00082-8
10 Shudo  T, Suzuki  H. Applicability of heat transfer equations to hydrogen combustion. JSAE Review, 2002, 23(3): 303–308
https://doi.org/10.1016/S0389-4304(02)00193-5
11 Polasek Milos, Macek Jan and Takats. Michal hydrogen fueled engine properties of working cycle and emission potentials. SAE Paper, 2002, Paper No. 020373
12 Milen  M, Kiril  B. Investigation of the effects of hydrogen addition on performance and exhaust emissions of diesel engine. In: Proceedings of FISITA World Automotive Congress. Barcelona, Spain, 2004, 23–27
13 Saravanan  N, Nagarajan  G. Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different starts of injection. Renewable Energy, 2009, 34(1): 328–334
https://doi.org/10.1016/j.renene.2008.04.023
14 Senthil Kumar  M, Ramesh  A, Nagalingam  B. Use of hydrogen to enhance the performance of a vegetable oil fuelled compression ignition engine. International Journal of Hydrogen Energy, 2003, 28(10): 1143–1154
15 Masood  M, Ishrat  M M, Reddy  A S. Computational combustion and emission analysis of hydrogen-diesel blends with experimental verification. International Journal of Hydrogen Energy, 2007, 32(13): 2539–2547
https://doi.org/10.1016/j.ijhydene.2006.11.008
16 Lee  J T, Kim  Y Y, Lee  C W, Caton  J A. An investigation of a cause of backfire and its control due to crevice volumes in a hydrogen fueled engine. Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 204–210
https://doi.org/10.1115/1.1339985
17 Lee Jong  T, Kim  Y Y, Caton Jerald  A. The development of a dual injection hydrogen fueled engine with high power and high efficiency. In: Proceedings of 2002 Fall Technical Conference of ASME-ICED. New Orleans, Louisiana, USA, 2002, 2–12
18 Saravanan  N, Nagarajan  G. Performance and emission studies on port injection of hydrogen with varied flow rates with diesel as an ignition source. Applied Energy, 2010, 87(7): 2218–2229
https://doi.org/10.1016/j.apenergy.2010.01.014
19 Kuleri  K A. In the lean burn spark ignition engines the effect of the hydrogen addition on the cyclic variability and exhaust emission (in Turkish). Dissertation for the Master’s Degree. Erzurum: Atatürk University Institute of Science, 2011
20 Tsujimura  T, Mikami  S, Achiha  N, Takunaga  Y, Senda  J, Fujimoto  H. A study of direct injection diesel engine fueled with hydrogen. SAE Paper, 2003, Paper No. 2003–01–0761
21 Boretti  A. Advance in hydrogen compression ignition internal combustion engines. International Journal of Hydrogen Energy, 2011, 36(19): 12601–12606
https://doi.org/10.1016/j.ijhydene.2011.06.148
22 Li  J, Lu  Y, Du  T. Back fire in hydrogen fueled engine and its control. In: Proceedings of the International Symposium on Hydrogen Systems. Beijing, China, 1985, 115–125
23 Lee  S J, Yi  H S, Kim  E S. Combustion characteristics of intake port injection type hydrogen fueled engine. International Journal of Hydrogen Energy, 1995, 20(4): 317–322
https://doi.org/10.1016/0360-3199(94)00052-2
24 Otto  U. A method to estimate hydrogen in engine exhaust and factors that affect NOx and particulate in diesel engine exhaust. SAE Paper, 1991, Paper No. 910732
25 Hoekstra  R L, van Blarigan  P, Mulligan  N. NOx emissions and efficiency of hydrogen, natural gas and hydrogen/natural gas blended fuels. SAE Paper, 1996, Paper No. 961103
26 Houseman  J, Hoehn  F W. A two charge engine concept: hydrogen enrichment. SAE Paper, 1974, Paper No. 741169
27 Breashes  R, Cotrill  H, Rupe  J. Partial hydrogen injection into internal combustion engines—effect on emissions and fuel economy. In: 1st Symposium on Low Pollution Power Systems Development. Ann Arbor, USA, 1973
28 Bell  S R, Gupta  M. Extension of the lean operation limit for natural gas fueling of a spark ignited engine using hydrogen blending. Combustion Science and Technology, 1997, 123(1–6): 23–48
https://doi.org/10.1080/00102209708935620
29 Shudo  T, Yamada  H. Hydrogen as an ignition-controlling agent for HCCI combustion engine by suppressing the low temperature oxidation. International Journal of Hydrogen Energy, 2007, 32(14): 3066–3072
https://doi.org/10.1016/j.ijhydene.2006.12.002
30 Gatts  T, Liu  S Y, Liew  C, Ralston  B, Bell  C, Li  H L. An experimental investigation of incomplete combustion of gaseous fuels of a heavy-duty diesel engine supplemented with hydrogen and natural gas. International Journal of Hydrogen Energy, 2012, 37(9): 7848–7859
https://doi.org/10.1016/j.ijhydene.2012.01.088
31 Owston  R, Magi  V, Abraham  J. Wall interactions of hydrogen flames compared with hydrocarbon flames. SAE Technical Paper, 2007, Paper No. 2007–01–1466
[1] Hilal ÇELİK KAZICI, Şakir YILMAZ, Tekin ŞAHAN, Fikret YILDIZ, Ömer Faruk ER, Hilal KIVRAK. A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology[J]. Front. Energy, 2020, 14(3): 578-589.
[2] Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage[J]. Front. Energy, 2020, 14(3): 570-577.
[3] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[4] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[5] Jiahui JIN, Lei WANG, Mingkai FU, Xin LI, Yuanwei LU. Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction[J]. Front. Energy, 2020, 14(1): 71-80.
[6] Xiaoping CHEN, Jihai XIONG, Jinming SHI, Song XIA, Shuanglin GUI, Wenfeng SHANGGUAN. Roles of various Ni species on TiO2 in enhancing photocatalytic H2 evolution[J]. Front. Energy, 2019, 13(4): 684-690.
[7] Tongbin ZHAO, Jiabo ZHANG, Dehao JU, Zhen HUANG, Dong HAN. Exergy losses in premixed flames of dimethyl ether and hydrogen blends[J]. Front. Energy, 2019, 13(4): 658-666.
[8] Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran[J]. Front. Energy, 2019, 13(3): 494-505.
[9] Mostafa REZAEI, Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran[J]. Front. Energy, 2019, 13(3): 539-550.
[10] Shuo XU, Jing LIU. Metal-based direct hydrogen generation as unconventional high density energy[J]. Front. Energy, 2019, 13(1): 27-53.
[11] Xiaohe YAN, Xin ZHANG, Chenghong GU, Furong LI. Power to gas: addressing renewable curtailment by converting to hydrogen[J]. Front. Energy, 2018, 12(4): 560-568.
[12] Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO. Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world[J]. Front. Energy, 2018, 12(3): 466-480.
[13] M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN. Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation[J]. Front. Energy, 2017, 11(4): 568-574.
[14] Alison WENHAM,Lihui SONG,Malcolm ABBOTT,Iskra ZAFIROVSKA,Sisi WANG,Brett HALLAM,Catherine CHAN,Allen BARNETT,Stuart WENHAM. Defect passivation on cast-mono crystalline screen-printed cells[J]. Front. Energy, 2017, 11(1): 60-66.
[15] Moonyong KIM,Phillip HAMER,Hongzhao LI,David PAYNE,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM. Impact of thermal processes on multi-crystalline silicon[J]. Front. Energy, 2017, 11(1): 32-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed