Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2023, Vol. 17 Issue (2) : 228-238    https://doi.org/10.1007/s11708-022-0852-6
RESEARCH ARTICLE
Fault tolerant control strategy for modular PWM current source inverter
Weishuo SHI(), Jinwei HE()
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
 Download: PDF(1953 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a fault-tolerant control method for an input-series output-parallel modular grid-tied pulse-width modulation (PWM) current source inverter is proposed to address the most commonly seen single symmetrical gate-commutated thyristor (SGCT) open-circuit fault problems. This method actively offsets the neutral point of the current space vector to ensure a sinusoidal output of the grid current, and it can achieve the upper limit power of the inverter under the condition of a single SGCT open-circuit fault. In addition, an active damping control method based on grid harmonic current feedback is proposed after analyzing the influence of the transformer ferromagnetic resonance caused by the neutral point offset on the power quality of the grid current. It has been demonstrated that the proposed method effectively suppresses the resonance caused by the transformer and the modified modulation, improving the grid current’s power quality.

Keywords current source converter (CSC)      fault-tolerant control      space vector modulation      active damping      resonance suppression      power quality     
Corresponding Author(s): Weishuo SHI,Jinwei HE   
Online First Date: 13 January 2023    Issue Date: 29 May 2023
 Cite this article:   
Weishuo SHI,Jinwei HE. Fault tolerant control strategy for modular PWM current source inverter[J]. Front. Energy, 2023, 17(2): 228-238.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0852-6
https://academic.hep.com.cn/fie/EN/Y2023/V17/I2/228
Fig.1  Configuration of input-series output-parallel modular CSI.
Current vectorTotal output PWM current (iwa iwb iwc)Switching state
I1(2 –2 0)*id16:16
I2(2 0 –2) *id12:12
I3(0 2 –2) *id32:32
I4(–2 2 0) *id34:34
I5(–2 0 2) *id54:54
I6(0 –2 2) *id56:56
I7(2 –1 –1) *id16:12 12:16
I8(1 1 –2) *id12:32 32:12
I9(–1 2 –1) *id32:34 34:32
I10(–2 1 1) *id34:54 54:34
I11(–1 –1 2) *id54:56 56:54
I12(1 –2 1) *id56:16 16:56
I13(1 –1 0) *id16:14 14:16 16:36 36:16 56:12 12:56 52:16 16:52
I14(1 0 –1) *id12:14 14:12 12:52 52:12 36:12 12:36 32:16 16:32
I15(0 1 –1) *id32:36 36:32 32:52 52:32 34:12 12:34 32:14 14:32
I16(–1 1 0) *id34:36 36:34 14:34 34:14 54:32 32:54 52:34 34:52
I17(–1 0 1) *id54:14 14:54 54:52 52:54 54:36 36:54 56:34 34:56
I18(0 –1 1) *id56:52 52:56 56:36 36:56 54:16 16:54 56:14 14:56
I0(0 0 0) *id14:14 36:36 52:52 14:36 14:52 36:52 36:14 52:14 52:36 16:34 12:54 32:56 34:16 54:12 56:32
Tab.1  Current vectors and their corresponding total output current and switching states
Fig.2  Current space vector diagram for different modulation modes.
Faulty switchIoff
CSC1S13/4Ide?jπ
S23/4Ide?j(2/3π)
S33/4Ide?j(1/3π)
S43/4Id
S53/4Idej(1/3π)
S63/4Idej(2/3π)
CSC2S13/4Ide?jπ
S23/4Ide?j(2/3π)
S33/4Ide?j(1/3π)
S43/4rmId
S53/4Idej(1/3π)
S63/4Idej(2/3π)
Tab.2  Expression of Ioff for all switches in the case of a single SGCT open-circuit fault
Fig.3  Single-phase equivalent circuit considering transformer ferromagnetic resonance.
Fig.4  Fault tolerant and active damping control diagram for input-series output-parallel CSI.
Fig.5  Transfer function diagram after introducing active damping control.
Fig.6  Closed-loop bode diagram of transfer function ig/ih with different k.
Fig.7  Closed-loop bode diagram ig/ig with different k.
Fig.8  Closed-loop bode diagram ig/ug with different k.
Circuit parametersValues
Line grid voltage380 V/50 Hz
DC link current50 A
Filter inductor (Ls1, Ls2)3.4 mH
Filter capacitor (Cs1, Cs2)50 μF
Leakage inductor on inverter side (Lg1, Lg2)0.4 mH
Leakage inductor on grid side (Lg)0.4 mH
Transformer ratio1:1
Control parametersValues
Switching frequency4.5 kHz
Proportional gain kpkp=0.5
Resonance gain krkr=50
Feedback coefficient kk= 0.1
Tab.3  Key parameters of the simulated system
System stageFaultyFault-tolerant modulationActive damping control
Stage 1NoNoNo
Stage 2YesNoNo
Stage 3YesYesNo
Stage 4YesYesYes
Tab.4  Description of different stages of the CSC
Fig.9  Simulated results for the system from healthy operation to fault-tolerant operation.
Circuit parametersValues
Line grid voltage100 V/50 Hz
DC link current25 A
Filter inductor (Ls1, Ls2)2 mH
Filter capacitor (Cs1, Cs2)50 μF
Leakage inductor on inverter side (Lg1, Lg2)40 μH
Leakage inductor on grid side (Lg)4 μH
Transformer ratio1:1
Control parametersValues
Switching frequency5 kHz
Proportional gain kpkp=0.1
Resonance gain krkr=20
Feedback coefficient kk = 0.1
Tab.5  Key parameters in hardware-in-the-loop simulation
Fig.10  CSC steady state performance using the proposed method under the case of (a) healthy operation without any fault and (b) fault operation with a single IGCT open-circuit.
Fig.11  CSC dynamic response during control method switches.
Fig.12  CSC dynamic performance using the proposed method under the case of grid voltage dips.
SGCTSymmetrical gate-commutated thyristor
CSCCurrent source converter
CSICurrent source inverter
VSCVoltage source converter
CSC1, CSC2Signle current source converter module
idDC link current
L1, L2, L3, and L4Upper and lower DC rail inductors of CSC1 and CSC2
iw1, iw2PWM output current of CSC1 and CSC2
Cs1, Ls1, Cs2, Ls2The capacitor and inductor of the LC filter 1 and LC filter 2
ic1, ic2Capacitor current of the LC filter 1 and LC filter 2
is1, is2Inductor current of the LC filter 1 and LC filter 2
Lg1, Lg2, LgThe leakage inductors of the transformer windings
ug, igThree-phase grid voltage and grid current
Rs1, Rs2The internal resistance of the inductor Ls1 and Ls2
S1–S6SGCT of CSC1 or CSC2
I0I18PWM current vectors
IoffActive offset vector
Iref’The current reference vector with the O' point as the center of the circle trace after the active offset
IrefThe current reference vector actually synthesized during the modulation
maModulation factor
ihHarmonic currents generated by transformer ferromagnetic resonance
iw, Ls, Cs, RsThe equivalent parameters in the equivalent circuit
igα, igβα-axis, and β-axis components of ig in the αβ reference frame
i*gα, i*gβα-axis, and β-axis components of reference grid current.
iα_ref1, iβ_ref1α-axis, and β-axis components of the fundamental current modulation input
iα_ref2, iβ_ref2α-axis, and β-axis components of the harmonic current modulation inputs
kp, kr, ωr, and ω0The proportional gain, resonant gain, bandpass frequency, and fundamental angular frequency, respectively, of the PR controller
ωcCutoff frequency of the high-pass filter
kFeedback coefficient
kh, ωh, ωcutHarmonic gain, harmonic angular frequency, and bandpass frequency of the equivalent transfer function of the transformer ferromagnetic resonance
iαβg_HPFGrid current after a high-pass filter
iαβkDamping current
  
1 X Guo, Y Yang, T Zhu. ESI: a novel three-phase inverter with leakage current attenuation for transformerless PV systems. IEEE Transactions on Industrial Electronics, 2018, 65(4): 2967–2974
https://doi.org/10.1109/TIE.2017.2757916
2 B Sahan, S V Araújo, C Nöding. et al.. Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems. IEEE Transactions on Power Electronics, 2011, 26(8): 2304–2318
https://doi.org/10.1109/TPEL.2010.2096827
3 G R KumarR K Bandaru. Single phase PV-fed current source inverter with sinusoidal grid current injection control. In: 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), Aligarh, India
4 Q Wei, B Wu, D Xu. et al.. An optimized strategy for PWM current source converter based wind conversion systems with reduced cost and improved efficiency. IEEE Transactions on Power Electronics, 2018, 33(2): 1202–1210
https://doi.org/10.1109/TPEL.2017.2676106
5 B Wu, J Pontt, J Rodriguez. et al.. Current-source converter and cycloconverter topologies for industrial medium-voltage drives. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2786–2797
https://doi.org/10.1109/TIE.2008.924175
6 Q Wei, B Wu, D Xu. et al.. A new configuration using PWM current source converters in low-voltage turbine-based wind energy conversion systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(2): 919–929
https://doi.org/10.1109/JESTPE.2017.2748281
7 D XuN R ZargariB Wu, et al.. A medium voltage AC drive with parallel current source inverters for high power applications. In: 2005 IEEE 36th Power Electronics Specialists Conference, Dresden, Germany
8 J He, Q Li, C Zhang. et al.. Quasi-selective harmonic elimination (Q-SHE) modulation-based DC current balancing method for parallel current source converters. IEEE Transactions on Power Electronics, 2019, 34(8): 7422–7436
https://doi.org/10.1109/TPEL.2018.2882463
9 B Lu, S K Sharma. A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Transactions on Industry Applications, 2009, 45(5): 1770–1777
https://doi.org/10.1109/TIA.2009.2027535
10 Y Neyshabouri, H Iman-Eini. A new fault-tolerant strategy for a cascaded H-bridge based STATCOM. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6436–6445
https://doi.org/10.1109/TIE.2018.2793182
11 W Song, A Q Huang. Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM. IEEE Transactions on Industrial Electronics, 2010, 57(8): 2700–2708
https://doi.org/10.1109/TIE.2009.2036019
12 Y Chen, L Du, J He. Online diagnosis and ride-through operation for cascaded H-bridge converter based STATCOM with a single open-circuit IGBT. IEEE Transactions on Industrial Electronics, 2022, 69(8): 7549–7559
https://doi.org/10.1109/TIE.2021.3104578
13 X Guo, S Sui, B Wang. et al.. A current-based approach for short-circuit fault diagnosis in closed-loop current source inverter. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7941–7950
https://doi.org/10.1109/TIE.2019.2941143
14 M T FardJ HeZ Wang. Fault diagnosis and fault-tolerant operation of current source inverter for safety-critical applications. In: 2020 IEEE Transportation Electrification Conference & Expo, Chicago, IL, USA
15 J He, Y Lyu, Q Li. et al.. A fault-tolerant operation approach for grid-tied five-phase current-source converters with one-phase supplying wire broken. IEEE Transactions on Power Electronics, 2019, 34(7): 6200–6218
https://doi.org/10.1109/TPEL.2018.2867219
16 I P GerberF M MwanikiH J Vermeulen. Parameter estimation of a Ferro-resonance damping circuit using pseudo-random impulse sequence perturbations. In: 2021 56th International Universities Power Engineering Conference (UPEC), Middlesbrough, UK
17 T Abdelazim Mellik, F D Painter, D D Shipp. et al.. Proactive study and novel mitigation of MV power system damage due to sub-power-frequency Ferro-resonance for a gas plant. IEEE Transactions on Industry Applications, 2018, 54(4): 3991–4000
https://doi.org/10.1109/TIA.2018.2814564
18 Y Li. Control and resonance damping of voltage-source and current-source converters with LC filters. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1511–1521
https://doi.org/10.1109/TIE.2008.2009562
19 B Wu. High-Power Converters and AC Drives. New York: Wiley-IEEE Press, 2006
[1] Shi JIN, Long SHI, Sul ADEMI, Yue ZHANG, Fengge ZHANG. Fault-tolerant control of an open-winding brushless doubly-fed wind power generator system with dual three-level converter[J]. Front. Energy, 2023, 17(1): 149-164.
[2] Abdelkarim AMMAR, Amor BOUREK, Abdelhamid BENAKCHA. Robust SVM-direct torque control of induction motor based on sliding mode controller and sliding mode observer[J]. Front. Energy, 2020, 14(4): 836-849.
[3] Illia DIAHOVCHENKO, Vitalii VOLOKHIN, Victoria KUROCHKINA, Michal ŠPES, Michal KOSTEREC. Effect of harmonic distortion on electric energy meters of different metrological principles[J]. Front. Energy, 2019, 13(2): 377-385.
[4] Przemyslaw JANIK, Grzegorz KOSOBUDZKI, Harald SCHWARZ. Influence of increasing numbers of RE-inverters on the power quality in the distribution grids: A PQ case study of a representative wind turbine and photovoltaic system[J]. Front. Energy, 2017, 11(2): 155-167.
[5] M. BENADJA,S. SAAD,A. BELHAMRA. Rapid transaction to load variations of active filter supplied by PV system[J]. Front. Energy, 2014, 8(3): 335-344.
[6] Ling Ai WONG, Hussain SHAREEF, Azah MOHAMED, Ahmad Asrul IBRAHIM. Novel quantum-inspired firefly algorithm for optimal power quality monitor placement[J]. Front. Energy, 2014, 8(2): 254-260.
[7] Salim CHENNAI,M-T BENCHOUIA. Unified power quality conditioner based on a three-level NPC inverter using fuzzy control techniques for all voltage disturbances compensation[J]. Front. Energy, 2014, 8(2): 221-239.
[8] Subbaraman SRINATH, Chandan KUMAR, M. P. SELVAN. A simple digital control algorithm for three phase shunt active filter: simulation and experimentation[J]. Front Energ, 2014, 8(1): 119-128.
[9] F. BENCHABANE, A. TITAOUINE, O. BENNIS, K. YAHIA, D. TAIBI. Direct field oriented control scheme for space vector modulated AC/DC/AC converter fed induction motor[J]. Front Energ, 2012, 6(2): 129-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed