1 |
Ali I, Brunner H, Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis. J Comput Math (in press)
|
2 |
Ali I, Brunner H, Tang T. Spectral methods for pantograph differential and integral equations with multiple delays (to appear)
|
3 |
Andreoli G. Sulle equazioni integrali. Rend Circ Mat Palermo , 1914, 37: 76-112 doi: 10.1007/BF03014814
|
4 |
Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J Numer Anal , 2002, 22: 529-536 doi: 10.1093/imanum/22.4.529
|
5 |
Bellen A, Brunner H, Maset S, Torelli L. Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays. BIT , 2006, 46: 229-247 doi: 10.1007/s10543-006-0055-2
|
6 |
Bellen A, Guglielmi N, Torelli L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl Numer Math , 1997, 24: 275-293 doi: 10.1016/S0168-9274(97)00026-3
|
7 |
Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: Oxford University Press, 2003 doi: 10.1093/acprof:oso/9780198506546.001.0001
|
8 |
Brunner H. On the discretization of differential and Volterra integral equations with variable delay. BIT , 1997, 37: 1-12 doi: 10.1007/BF02510168
|
9 |
Brunner H. The numerical analysis of functional integral and integro-differential equations of Volterra type. Acta Numerica , 2004, 55-145
|
10 |
Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics , Vol 15. Cambridge: Cambridge University Press, 2004
|
11 |
Brunner H. Recent advances in the numerical analysis of Volterra functional differential equations with variable delays. J Comput Appl Math , 2008 (in press) doi: 10.1016/j.cam.2008.03.024
|
12 |
Brunner H. On the regularity of solutions for Volterra functional equations with weakly singular kernels and vanishing delays (to appear)
|
13 |
Brunner H. Collocation methods for pantograph-type Volterra functional equations with multiple delays. Comput Methods Appl Math , 2008 (in press)
|
14 |
Brunner H, Hu Q-Y. Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays. SIAM J Numer Anal , 2005, 43: 1934-1949 doi: 10.1137/040615705
|
15 |
Brunner H, Hu Q-Y. Optimal superconvergence results for delay integro-differential equations of pantograph type. SIAM J Numer Anal , 2007, 45: 986-1004 doi: 10.1137/060660357
|
16 |
Brunner H, Maset S. Time transformations for delay differential equations. Discrete Contin Dyn Syst (in press)
|
17 |
Brunner H, Maset S. Time transformations for state-dependent delay differential equations. Preprint , 2008
|
18 |
Brunner H, Pedas A, Vainikko G. The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math Comp , 1999, 68: 1079-1095 doi: 10.1090/S0025-5718-99-01073-X
|
19 |
Brunner H, Pedas A, Vainikko G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J Numer Anal , 2001, 39: 957-982 doi: 10.1137/S0036142900376560
|
20 |
Buhmann M D, Iserles A. Numerical analysis of functional equations with a variable delay. In: Griffths D F, Watson G A, eds. Numerical Analysis (Dundee 1991). Pitman Res Notes Math Ser, 260 . Harlow: Longman Scienti?c & Technical, 1992, 17-33
|
21 |
Buhmann M D, Iserles A. On the dynamics of a discretized neutral equation. IMA J Numer Anal , 1992, 12: 339-363 doi: 10.1093/imanum/12.3.339
|
22 |
Buhmann M D, Iserles A. Stability of the discretized pantograph differential equation. Math Comp , 1993, 60: 575-589 doi: 10.2307/2153103
|
23 |
Buhmann M, Iserles A, N?rsett S P. Runge-Kutta methods for neutral differential equations. In: Agarwal R P, ed. Contributions in Numerical Mathematics (Singapore 1993) . River Edge: World Scienti?c Publ, 1993, 85-98
|
24 |
Carvalho L A V, Cooke K L. Collapsible backward continuation and numerical approximations in a functional differential equation. J Differential Equations , 1998, 143: 96-109 doi: 10.1006/jdeq.1997.3350
|
25 |
Li G Chambers. Some properties of the functional equation ?(x)=f(x)+∫0λxg(x,y,?(y))dy. Internat J Math Math Sci , 1990, 14: 27-44
|
26 |
Denisov A M, Korovin S V. On Volterra’s integral equation of the ?rst kind. Moscow Univ Comput Math Cybernet , 1992, 3: 19-24
|
27 |
Denisov A M, Lorenzi A. On a special Volterra integral equation of the ?rst kind. Boll Un Mat Ital B (7) , 1995, 9: 443-457
|
28 |
Denisov A M, Lorenzi A. Existence results and regularization techniques for severely ill-posed integrofunctional equations. Boll Un Mat Ital B (7) , 1997, 11: 713-732
|
29 |
Feldstein A, Iserles A, Levin D. Embedding of delay equations into an in?nitedimensional ODE system. J Differential Equations , 1995, 117: 127-150 doi: 10.1006/jdeq.1995.1050
|
30 |
Feldstein A, Liu Y K. On neutral functional-differential equations with variable time delays. Math Proc Cambridge Phil Soc , 1998, 124: 371-384 doi: 10.1017/S0305004198002497
|
31 |
Fox L, Mayers D F, Ockendon J R, Tayler A B. On a functional differential equation. J Inst Math Appl , 1971, 8: 271-307 doi: 10.1093/imamat/8.3.271
|
32 |
Frederickson P O. Dirichlet solutions for certain functional differential equations. In: Urabe M, ed. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto 1971). Lecture Notes in Math , Vol 243. Berlin-Heidelberg: Springer-Verlag, 1971, 249-251 doi: 10.1007/BFb0058733
|
33 |
Frederickson P O. Global solutions to certain nonlinear functional differential equations. J Math Anal Appl , 1971, 33: 355-358 doi: 10.1016/0022-247X(71)90061-8
|
34 |
Gan S Q. Exact and discretized dissipativity of the pantograph equation. J Comput Math , 2007, 25: 81-88
|
35 |
Guglielmi N. Short proofs and a counterexample for analytical and numerical stability of delay equations with in?nite memory. IMA J Numer Anal , 2006, 26: 60-77 doi: 10.1093/imanum/dri021
|
36 |
Guglielmi N, Zennaro M. Stability of one-leg θ-methods for the variable coeffcient pantograph equation on the quasi-geometric mesh. IMA J Numer Anal , 2003, 23: 421-438 doi: 10.1093/imanum/23.3.421
|
37 |
Huang C M, Vandewalle S. Discretized stability and error growth of the nonautonomous pantograph equation. SIAM J Numer Anal , 2005, 42: 2020-2042 doi: 10.1137/S0036142902419296
|
38 |
Iserles A. On the generalized pantograph functional differential equation. Europ J Appl Math , 1993, 4: 1-38 doi: 10.1017/S0956792500000966
|
39 |
Iserles A. Numerical analysis of delay differential equations with variable delays. Ann Numer Math , 1994, 1: 133-152
|
40 |
Iserles A. On nonlinear delay-differential equations. Trans Amer Math Soc , 1994, 344: 441-477 doi: 10.2307/2154725
|
41 |
Iserles A. Beyond the classical theory of computational ordinary differential equations. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis (York 1996) . Oxford: Clarendon Press, 1997, 171-192
|
42 |
Iserles A, Liu Y K. On pantograph integro-differential equations. J Integral Equations Appl , 1994, 6: 213-237 doi: 10.1216/jiea/1181075805
|
43 |
Iserles A, Terj′eki J. Stability and asymptotic stability of functional-differential equations. J London Math Soc (2) , 1995, 51: 559-572
|
44 |
Ishiwata E. On the attainable order of collocation methods for the neutral functional-differential equations with proportional delays. Computing , 2000, 64: 207-222 doi: 10.1007/s006070050044
|
45 |
Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Appl Math Comput , 2007, 187: 741-747 doi: 10.1016/j.amc.2006.08.086
|
46 |
Jackiewicz Z. Asymptotic stability analysis of θ-methods for functional differential equations. Numer Math , 1984, 43: 389-396 doi: 10.1007/BF01390181
|
47 |
Kato T, McLeod J B. The functional-differential equation y′(x)=ay(λx)+by(x). Bull Amer Math Soc , 1971, 77: 891-937 doi: 10.1090/S0002-9904-1971-12805-7
|
48 |
Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numer Math , 1999, 84: 233-247 doi: 10.1007/s002110050470
|
49 |
Lalesco T. Sur l’′equation de Volterra. J de Math (6) , 1908, 4: 309-317
|
50 |
Lalesco T. Sur une ′equation int′egrale du type Volterra. C R Acad Sci Paris , 1911, 152: 579-580
|
51 |
Li D, Liu M Z. Asymptotic stability of numerical solution of pantograph delay differential equations. J Harbin Inst Tech , 1999, 31: 57-59 (in Chinese)
|
52 |
Li D, Liu M Z. The properties of exact solution of multi-pantograph delay differential equation. J Harbin Inst Tech , 2000, 32: 1-3 (in Chinese)
|
53 |
Liang J, Liu M Z. Stability of numerical solutions to pantograph delay systems. J Harbin Inst Tech , 1996, 28: 21-26 (in Chinese)
|
54 |
Liang J, Liu M Z. Numerical stability of θ-methods for pantograph delay differential equations. J Numer Methods Comput Appl , 1996, 12: 271-278 (in Chinese) doi: 10.1002/(SICI)1099-0887(199605)12:5<271::AID-CNM908>3.0.CO;2-O
|
55 |
Liang J, Qiu S, Liu M Z. The stability of θ-methods for pantograph delay differential equations. Numer Math J Chinese Univ (Engl Ser) , 1996, 5: 80-85
|
56 |
Liu M Z, Li D. Properties of analytic solution and numerical solution of multipantograph equation. Appl Math Comput , 2004, 155: 853-871 doi: 10.1016/j.amc.2003.07.017
|
57 |
Liu M Z, Wang Z, Hu G. Asymptotic stability of numerical methods with constant stepsize for pantograph equations. BIT , 2005, 45: 743-759 doi: 10.1007/s10543-005-0022-3
|
58 |
Liu M Z, Yang Z W, Xu Y. The stability of modi?ed Runge-Kutta methods for the pantograph equation. Math Comp , 2006, 75: 1201-1215 doi: 10.1090/S0025-5718-06-01844-8
|
59 |
Liu Y K. Stability analysis of θ-methods for neutral functional-differential equations. Numer Math , 1995, 70: 473-485 doi: 10.1007/s002110050129
|
60 |
Liu Y K. The linear q-difference equation y(x) = ay(qx) + f(x). Appl Math Lett , 1995, 8: 15-18 doi: 10.1016/0893-9659(94)00103-J
|
61 |
Liu Y K. On θ-methods for delay differential equations with in?nite lag. J Comput Appl Math , 1996, 71: 177-190 doi: 10.1016/0377-0427(95)00222-7
|
62 |
Liu Y K. Asymptotic behaviour of functional-differential equations with proportional time delays. Europ J Appl Math , 1996, 7: 11-30 doi: 10.1017/S0956792500002163
|
63 |
Liu Y K. Numerical investigation of the pantograph equation. Appl Numer Math , 1997, 24: 309-317 doi: 10.1016/S0168-9274(97)00028-7
|
64 |
Ma S F, Yang Z W, Liu M Z. Hα-stability of modi?ed Runge-Kutta methods for nonlinear neutral pantograph equations. J Math Anal Appl , 2007, 335: 1128-1142 doi: 10.1016/j.jmaa.2007.02.035
|
65 |
Morris G R, Feldstein A, Bowen E W. The Phragmén-Lindel?f principle and a class of functional differential equations. In: Weiss L, ed. Ordinary Differential Equations (Washington, DC, 1971) . New York: Academic Press, 1972, 513-540
|
66 |
Mure?san V. On a class of Volterra integral equations with deviating argument. Studia Univ Babe?s-Bolyai Math , 1999, XLIV: 47-54
|
67 |
Muroya Y, Ishiwata E, Brunner H. On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math , 2003, 152: 347-366 doi: 10.1016/S0377-0427(02)00716-1
|
68 |
Ockendon J R, Tayler A B. The dynamics of a current collection system for an electric locomotive. Proc Roy Soc London Ser A , 1971, 322: 447-468 doi: 10.1098/rspa.1971.0078
|
69 |
Pukhnacheva T P. A functional equation with contracting argument. Siberian Math J , 1990, 31: 365-367 doi: 10.1007/BF00970667
|
70 |
Qiu L, Mitsui T, Kuang J X. The numerical stability of the θ-method for delay differential equations with many variable delays. J Comput Math , 1999, 17: 523-532
|
71 |
Si J G, Cheng S S. Analytic solutions of a functional differential equation with proportional delays. Bull Korean Math Soc , 2002, 39: 225-236
|
72 |
Takama N, Muroya Y, Ishiwata E. On the attainable order of collocation methods for the delay differential equations with proportional delay. BIT , 2000, 40: 374-394 doi: 10.1023/A:1022351309662
|
73 |
Terj′eki J. Representation of the solutions to linear pantograph equations. Acta Sci Math (Szeged) , 1995, 60: 705-713
|
74 |
Volterra V. Sopra alcune questioni di inversione di integrali de?nite. Ann Mat Pura Appl , 1897, 25: 139-178 doi: 10.1007/BF02580504
|
75 |
Volterra V. Le?cons sur les équations int′égrales. Paris: Gauthier-Villars, 1913 (VFIEs with proportional delays as limits of integration are treated on pp . 92-101 )
|
76 |
Xu Y, Zhao J, Liu M. ?-stability of Runge-Kutta methods with variable stepsize for systems of pantograph equations. J Comput Math , 2004, 22: 727-734
|
77 |
Yu Y, Li S. Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations. J Comput Math , 2005, 23: 351-356
|
78 |
Zhang C, Sun G. The discrete dynamics of nonlinear in?nite-delay differential equations. Appl Math Lett , 2002, 15: 521-526 doi: 10.1016/S0893-9659(02)80001-5
|
79 |
Zhang C, Sun G. Boundedness and asymptotic stability of multistep methods for pantograph equations. J Comput Math , 2004, 22: 447-456
|
80 |
Zhao J J, Cao W R, Liu M Z. Asymptotic stability of Runge-Kutta methods for the pantograph equations. J Comput Math , 2004, 22: 523-534
|
81 |
Zhao J J, Xu Y, Qiao Y. The attainable order of the collocation method for doublepantograph delay differential equation. Numer Math J Chinese Univ , 2005, 27: 297-308 (in Chinese)
|