Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (1) : 3-22    https://doi.org/10.1007/s11464-009-0001-0
SURVEY ARTICLE
Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays
Hermann BRUNNER1,2()
1. Department of Mathematics and Statistics, Memorial University of Newfoundland,St. John’s, NL A1C 5S7, Canada; 2. Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
 Download: PDF(238 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aims of this paper are (i) to present a survey of recent advances in the analysis of superconvergence of collocation solutions for linear Volterra-type functional integral and integro-differential equations with delay functions θ(t) vanishing at the initial point of the interval of integration (with θ(t) = qt (0 < q< 1, t ≥ 0) being an important special case), and (ii) to point, by means of a list of open problems, to areas in the numerical analysis of such Volterra functional equations where more research needs to be carried out.

Keywords Volterra functional integral and integro-differential equation      vanishing delay      pantograph equation      collocation solution      optimal order of superconvergence     
Corresponding Author(s): BRUNNER Hermann,Email:hermann@math.mun.ca, hbrunner@math.hkbu.edu.hk   
Issue Date: 05 March 2009
 Cite this article:   
Hermann BRUNNER. Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays[J]. Front Math Chin, 2009, 4(1): 3-22.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0001-0
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I1/3
1 Ali I, Brunner H, Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis. J Comput Math (in press)
2 Ali I, Brunner H, Tang T. Spectral methods for pantograph differential and integral equations with multiple delays (to appear)
3 Andreoli G. Sulle equazioni integrali. Rend Circ Mat Palermo , 1914, 37: 76-112
doi: 10.1007/BF03014814
4 Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J Numer Anal , 2002, 22: 529-536
doi: 10.1093/imanum/22.4.529
5 Bellen A, Brunner H, Maset S, Torelli L. Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays. BIT , 2006, 46: 229-247
doi: 10.1007/s10543-006-0055-2
6 Bellen A, Guglielmi N, Torelli L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl Numer Math , 1997, 24: 275-293
doi: 10.1016/S0168-9274(97)00026-3
7 Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: Oxford University Press, 2003
doi: 10.1093/acprof:oso/9780198506546.001.0001
8 Brunner H. On the discretization of differential and Volterra integral equations with variable delay. BIT , 1997, 37: 1-12
doi: 10.1007/BF02510168
9 Brunner H. The numerical analysis of functional integral and integro-differential equations of Volterra type. Acta Numerica , 2004, 55-145
10 Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics , Vol 15. Cambridge: Cambridge University Press, 2004
11 Brunner H. Recent advances in the numerical analysis of Volterra functional differential equations with variable delays. J Comput Appl Math , 2008 (in press)
doi: 10.1016/j.cam.2008.03.024
12 Brunner H. On the regularity of solutions for Volterra functional equations with weakly singular kernels and vanishing delays (to appear)
13 Brunner H. Collocation methods for pantograph-type Volterra functional equations with multiple delays. Comput Methods Appl Math , 2008 (in press)
14 Brunner H, Hu Q-Y. Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays. SIAM J Numer Anal , 2005, 43: 1934-1949
doi: 10.1137/040615705
15 Brunner H, Hu Q-Y. Optimal superconvergence results for delay integro-differential equations of pantograph type. SIAM J Numer Anal , 2007, 45: 986-1004
doi: 10.1137/060660357
16 Brunner H, Maset S. Time transformations for delay differential equations. Discrete Contin Dyn Syst (in press)
17 Brunner H, Maset S. Time transformations for state-dependent delay differential equations. Preprint , 2008
18 Brunner H, Pedas A, Vainikko G. The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math Comp , 1999, 68: 1079-1095
doi: 10.1090/S0025-5718-99-01073-X
19 Brunner H, Pedas A, Vainikko G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J Numer Anal , 2001, 39: 957-982
doi: 10.1137/S0036142900376560
20 Buhmann M D, Iserles A. Numerical analysis of functional equations with a variable delay. In: Griffths D F, Watson G A, eds. Numerical Analysis (Dundee 1991). Pitman Res Notes Math Ser, 260 . Harlow: Longman Scienti?c &amp; Technical, 1992, 17-33
21 Buhmann M D, Iserles A. On the dynamics of a discretized neutral equation. IMA J Numer Anal , 1992, 12: 339-363
doi: 10.1093/imanum/12.3.339
22 Buhmann M D, Iserles A. Stability of the discretized pantograph differential equation. Math Comp , 1993, 60: 575-589
doi: 10.2307/2153103
23 Buhmann M, Iserles A, N?rsett S P. Runge-Kutta methods for neutral differential equations. In: Agarwal R P, ed. Contributions in Numerical Mathematics (Singapore 1993) . River Edge: World Scienti?c Publ, 1993, 85-98
24 Carvalho L A V, Cooke K L. Collapsible backward continuation and numerical approximations in a functional differential equation. J Differential Equations , 1998, 143: 96-109
doi: 10.1006/jdeq.1997.3350
25 Li G Chambers. Some properties of the functional equation ?(x)=f(x)+0λxg(x,y,?(y))dy. Internat J Math Math Sci , 1990, 14: 27-44
26 Denisov A M, Korovin S V. On Volterra’s integral equation of the ?rst kind. Moscow Univ Comput Math Cybernet , 1992, 3: 19-24
27 Denisov A M, Lorenzi A. On a special Volterra integral equation of the ?rst kind. Boll Un Mat Ital B (7) , 1995, 9: 443-457
28 Denisov A M, Lorenzi A. Existence results and regularization techniques for severely ill-posed integrofunctional equations. Boll Un Mat Ital B (7) , 1997, 11: 713-732
29 Feldstein A, Iserles A, Levin D. Embedding of delay equations into an in?nitedimensional ODE system. J Differential Equations , 1995, 117: 127-150
doi: 10.1006/jdeq.1995.1050
30 Feldstein A, Liu Y K. On neutral functional-differential equations with variable time delays. Math Proc Cambridge Phil Soc , 1998, 124: 371-384
doi: 10.1017/S0305004198002497
31 Fox L, Mayers D F, Ockendon J R, Tayler A B. On a functional differential equation. J Inst Math Appl , 1971, 8: 271-307
doi: 10.1093/imamat/8.3.271
32 Frederickson P O. Dirichlet solutions for certain functional differential equations. In: Urabe M, ed. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto 1971). Lecture Notes in Math , Vol 243. Berlin-Heidelberg: Springer-Verlag, 1971, 249-251
doi: 10.1007/BFb0058733
33 Frederickson P O. Global solutions to certain nonlinear functional differential equations. J Math Anal Appl , 1971, 33: 355-358
doi: 10.1016/0022-247X(71)90061-8
34 Gan S Q. Exact and discretized dissipativity of the pantograph equation. J Comput Math , 2007, 25: 81-88
35 Guglielmi N. Short proofs and a counterexample for analytical and numerical stability of delay equations with in?nite memory. IMA J Numer Anal , 2006, 26: 60-77
doi: 10.1093/imanum/dri021
36 Guglielmi N, Zennaro M. Stability of one-leg θ-methods for the variable coeffcient pantograph equation on the quasi-geometric mesh. IMA J Numer Anal , 2003, 23: 421-438
doi: 10.1093/imanum/23.3.421
37 Huang C M, Vandewalle S. Discretized stability and error growth of the nonautonomous pantograph equation. SIAM J Numer Anal , 2005, 42: 2020-2042
doi: 10.1137/S0036142902419296
38 Iserles A. On the generalized pantograph functional differential equation. Europ J Appl Math , 1993, 4: 1-38
doi: 10.1017/S0956792500000966
39 Iserles A. Numerical analysis of delay differential equations with variable delays. Ann Numer Math , 1994, 1: 133-152
40 Iserles A. On nonlinear delay-differential equations. Trans Amer Math Soc , 1994, 344: 441-477
doi: 10.2307/2154725
41 Iserles A. Beyond the classical theory of computational ordinary differential equations. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis (York 1996) . Oxford: Clarendon Press, 1997, 171-192
42 Iserles A, Liu Y K. On pantograph integro-differential equations. J Integral Equations Appl , 1994, 6: 213-237
doi: 10.1216/jiea/1181075805
43 Iserles A, Terj′eki J. Stability and asymptotic stability of functional-differential equations. J London Math Soc (2) , 1995, 51: 559-572
44 Ishiwata E. On the attainable order of collocation methods for the neutral functional-differential equations with proportional delays. Computing , 2000, 64: 207-222
doi: 10.1007/s006070050044
45 Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Appl Math Comput , 2007, 187: 741-747
doi: 10.1016/j.amc.2006.08.086
46 Jackiewicz Z. Asymptotic stability analysis of θ-methods for functional differential equations. Numer Math , 1984, 43: 389-396
doi: 10.1007/BF01390181
47 Kato T, McLeod J B. The functional-differential equation y(x)=ay(λx)+by(x). Bull Amer Math Soc , 1971, 77: 891-937
doi: 10.1090/S0002-9904-1971-12805-7
48 Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numer Math , 1999, 84: 233-247
doi: 10.1007/s002110050470
49 Lalesco T. Sur l’′equation de Volterra. J de Math (6) , 1908, 4: 309-317
50 Lalesco T. Sur une ′equation int′egrale du type Volterra. C R Acad Sci Paris , 1911, 152: 579-580
51 Li D, Liu M Z. Asymptotic stability of numerical solution of pantograph delay differential equations. J Harbin Inst Tech , 1999, 31: 57-59 (in Chinese)
52 Li D, Liu M Z. The properties of exact solution of multi-pantograph delay differential equation. J Harbin Inst Tech , 2000, 32: 1-3 (in Chinese)
53 Liang J, Liu M Z. Stability of numerical solutions to pantograph delay systems. J Harbin Inst Tech , 1996, 28: 21-26 (in Chinese)
54 Liang J, Liu M Z. Numerical stability of θ-methods for pantograph delay differential equations. J Numer Methods Comput Appl , 1996, 12: 271-278 (in Chinese)
doi: 10.1002/(SICI)1099-0887(199605)12:5&lt;271::AID-CNM908&gt;3.0.CO;2-O
55 Liang J, Qiu S, Liu M Z. The stability of θ-methods for pantograph delay differential equations. Numer Math J Chinese Univ (Engl Ser) , 1996, 5: 80-85
56 Liu M Z, Li D. Properties of analytic solution and numerical solution of multipantograph equation. Appl Math Comput , 2004, 155: 853-871
doi: 10.1016/j.amc.2003.07.017
57 Liu M Z, Wang Z, Hu G. Asymptotic stability of numerical methods with constant stepsize for pantograph equations. BIT , 2005, 45: 743-759
doi: 10.1007/s10543-005-0022-3
58 Liu M Z, Yang Z W, Xu Y. The stability of modi?ed Runge-Kutta methods for the pantograph equation. Math Comp , 2006, 75: 1201-1215
doi: 10.1090/S0025-5718-06-01844-8
59 Liu Y K. Stability analysis of θ-methods for neutral functional-differential equations. Numer Math , 1995, 70: 473-485
doi: 10.1007/s002110050129
60 Liu Y K. The linear q-difference equation y(x) = ay(qx) + f(x). Appl Math Lett , 1995, 8: 15-18
doi: 10.1016/0893-9659(94)00103-J
61 Liu Y K. On θ-methods for delay differential equations with in?nite lag. J Comput Appl Math , 1996, 71: 177-190
doi: 10.1016/0377-0427(95)00222-7
62 Liu Y K. Asymptotic behaviour of functional-differential equations with proportional time delays. Europ J Appl Math , 1996, 7: 11-30
doi: 10.1017/S0956792500002163
63 Liu Y K. Numerical investigation of the pantograph equation. Appl Numer Math , 1997, 24: 309-317
doi: 10.1016/S0168-9274(97)00028-7
64 Ma S F, Yang Z W, Liu M Z. Hα-stability of modi?ed Runge-Kutta methods for nonlinear neutral pantograph equations. J Math Anal Appl , 2007, 335: 1128-1142
doi: 10.1016/j.jmaa.2007.02.035
65 Morris G R, Feldstein A, Bowen E W. The Phragmén-Lindel?f principle and a class of functional differential equations. In: Weiss L, ed. Ordinary Differential Equations (Washington, DC, 1971) . New York: Academic Press, 1972, 513-540
66 Mure?san V. On a class of Volterra integral equations with deviating argument. Studia Univ Babe?s-Bolyai Math , 1999, XLIV: 47-54
67 Muroya Y, Ishiwata E, Brunner H. On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math , 2003, 152: 347-366
doi: 10.1016/S0377-0427(02)00716-1
68 Ockendon J R, Tayler A B. The dynamics of a current collection system for an electric locomotive. Proc Roy Soc London Ser A , 1971, 322: 447-468
doi: 10.1098/rspa.1971.0078
69 Pukhnacheva T P. A functional equation with contracting argument. Siberian Math J , 1990, 31: 365-367
doi: 10.1007/BF00970667
70 Qiu L, Mitsui T, Kuang J X. The numerical stability of the θ-method for delay differential equations with many variable delays. J Comput Math , 1999, 17: 523-532
71 Si J G, Cheng S S. Analytic solutions of a functional differential equation with proportional delays. Bull Korean Math Soc , 2002, 39: 225-236
72 Takama N, Muroya Y, Ishiwata E. On the attainable order of collocation methods for the delay differential equations with proportional delay. BIT , 2000, 40: 374-394
doi: 10.1023/A:1022351309662
73 Terj′eki J. Representation of the solutions to linear pantograph equations. Acta Sci Math (Szeged) , 1995, 60: 705-713
74 Volterra V. Sopra alcune questioni di inversione di integrali de?nite. Ann Mat Pura Appl , 1897, 25: 139-178
doi: 10.1007/BF02580504
75 Volterra V. Le?cons sur les équations int′égrales. Paris: Gauthier-Villars, 1913 (VFIEs with proportional delays as limits of integration are treated on pp . 92-101 )
76 Xu Y, Zhao J, Liu M. ?-stability of Runge-Kutta methods with variable stepsize for systems of pantograph equations. J Comput Math , 2004, 22: 727-734
77 Yu Y, Li S. Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations. J Comput Math , 2005, 23: 351-356
78 Zhang C, Sun G. The discrete dynamics of nonlinear in?nite-delay differential equations. Appl Math Lett , 2002, 15: 521-526
doi: 10.1016/S0893-9659(02)80001-5
79 Zhang C, Sun G. Boundedness and asymptotic stability of multistep methods for pantograph equations. J Comput Math , 2004, 22: 447-456
80 Zhao J J, Cao W R, Liu M Z. Asymptotic stability of Runge-Kutta methods for the pantograph equations. J Comput Math , 2004, 22: 523-534
81 Zhao J J, Xu Y, Qiao Y. The attainable order of the collocation method for doublepantograph delay differential equation. Numer Math J Chinese Univ , 2005, 27: 297-308 (in Chinese)
[1] Ran ZHANG, Benxi ZHU, Hehu XIE. Spectral methods for weakly singular Volterra integral equations with pantograph delays[J]. Front Math Chin, 2013, 8(2): 281-299.
[2] Zhanwen YANG, Hermann BRUNNER. Blow-up behavior of Hammerstein-type delay Volterra integral equations[J]. Front Math Chin, 2013, 8(2): 261-280.
[3] Ishtiaq ALI, Hermann BRUNNER, Tao TANG. Spectral methods for pantograph-type differential and integral equations with multiple delays[J]. Front Math Chin, 2009, 4(1): 49-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed