Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (1) : 49-61    https://doi.org/10.1007/s11464-009-0010-z
RESEARCH ARTICLE
Spectral methods for pantograph-type differential and integral equations with multiple delays
Ishtiaq ALI1,2(), Hermann BRUNNER3,4, Tao TANG4
1. Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China; 2. Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan; 3. Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; 4. Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
 Download: PDF(205 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We analyze the convergence properties of the spectral method when used to approximate smooth solutions of delay differential or integral equations with two or more vanishing delays. It is shown that for the pantograph-type functional equations the spectral methods yield the familiar exponential order of convergence. Various numerical examples are used to illustrate these results.

Keywords Delay differential equation      Volterra functional integral equation      multiple vanishing delays      Legendre spectral method      convergence analysis     
Corresponding Author(s): ALI Ishtiaq,Email:ishtiaq@lsec.cc.ac.cn, ishtiaqali@comsats.edu.pk   
Issue Date: 05 March 2009
 Cite this article:   
Ishtiaq ALI,Hermann BRUNNER,Tao TANG. Spectral methods for pantograph-type differential and integral equations with multiple delays[J]. Front Math Chin, 2009, 4(1): 49-61.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0010-z
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I1/49
1 Ali I, Brunner H, Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis
2 Bellen A, Zennaro M. Numerical Methods for Delay Differentials Equations. Oxford: Oxford University Press, 2003
doi: 10.1093/acprof:oso/9780198506546.001.0001
3 Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge: Cambridge University Press, 2004
4 Canuto C, Hussaini M, Quarteroni A, Zang T A. Spectral Methods: Fundamentals in Single Domains. Berlin: Springer, 2006
5 Derfel G A, Vogl F. On the asymptotics of solutions of a class of linear functionaldifferential equations. Europ J Appl Math , 1996, 7: 511-518
doi: 10.1017/S0956792500002527
6 Guglielmi N. Short proofs and a counterexample for analytical and numerical stability of delay equations with infinite memory. IMA J Numer Anal , 2006, 26: 60-77
doi: 10.1093/imanum/dri021
7 Guglielmi N, Hairer E. Implementing Radau IIA methods for stiff delay differential equations. Computing , 2001, 67: 1-12
doi: 10.1007/s006070170013
8 Iserles A. On the generalized pantograph functional-differential equation. Europ J Appl Math , 1993, 4: 1-38
doi: 10.1017/S0956792500000966
9 Iserles A, Liu Y-K. On pantograph integro-differential equations. J Integral Equations Appl , 1994, 6: 213-237
doi: 10.1216/jiea/1181075805
10 Ishiwata E. On the attainable order of collocation methods for the neutral functionaldifferential equations with proportional delays. Computing , 2000, 64: 207-222
doi: 10.1007/s006070050044
11 Li D, Liu M Z. Asymptotic stability of numerical solution of pantograph delay differential equations. J Harbin Inst Tech , 1999, 31: 57-59 (in Chinese)
12 Liu M Z, Li D. Properties of analytic solution and numerical solution of multipantograph equation. Appl Math Comput , 2004, 155: 853-871
doi: 10.1016/j.amc.2003.07.017
13 Mastroianni G, Occorsio D. Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey. J Comput Appl Math , 2001, 134: 325-341
doi: 10.1016/S0377-0427(00)00557-4
14 Qiu L, Mitsui T, Kuang J X. The numerical stability of the θ-method for delay differential equations with many variable delays. J Comput Math , 1999, 17: 523-532
15 Shen J, Tang T. Spectral and High-Order Methods with Applications. Beijing: Science Press, 2006
16 Tang T, Xu X, Cheng J. On spectral methods for Volterra type integral equations and the convergence analysis. J Comput Math , 2008, 26: 825-837
17 Zhao J, Xu Y, Qiao Y. The attainable order of the collocation method for doublepantograph delay differential equation. Numer Math J Chinese Univ , 2005, 27: 297-308 (in Chinese)
[1] Yifen KE, Changfeng MA, Zhiru REN. A new alternating positive semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models[J]. Front. Math. China, 2018, 13(2): 313-340.
[2] Xianjuan LI, Tao TANG. Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind[J]. Front Math Chin, 2012, 7(1): 69-84.
[3] Junfeng LU, Zhenyue ZHANG. Convergence analysis of generalized nonlinear inexact Uzawa algorithm for stabilized saddle point problems[J]. Front Math Chin, 2011, 6(3): 473-492.
[4] Yuming CHEN, Qingwen HU, Jianhong WU, . Second-order differentiability with respect to parameters for differential equations with adaptive delays[J]. Front. Math. China, 2010, 5(2): 221-286.
[5] Lili CHANG, Ningning YAN, Wei GONG, . Finite element method for a nonsmooth elliptic equation[J]. Front. Math. China, 2010, 5(2): 191-209.
[6] Meirong ZHANG. From ODE to DDE[J]. Front Math Chin, 2009, 4(3): 585-598.
[7] Emiko ISHIWATA, Yoshiaki MUROYA. On collocation methods for delay differential and Volterra integral equations with proportional delay[J]. Front Math Chin, 2009, 4(1): 89-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed