Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (3) : 585-598    https://doi.org/10.1007/s11464-009-0034-4
RESEARCH ARTICLE
From ODE to DDE
Meirong ZHANG()
Department of Mathematical Sciences and Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
 Download: PDF(176 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, by considering ordinary differential equation (ODE) as a special case and a starting point of delay differential equation (DDE), we will show that some typical topological methods such as continuation theorems can be applied to detect some dynamics of DDE like periodic solutions. Several problems will be presented.

Keywords Ordinary differential equation (ODE)      delay differential equation (DDE)      periodic solution      continuation theorem      Sobolev constant      non-degeneracy     
Corresponding Author(s): ZHANG Meirong,Email:mzhang@math.tsinghua.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Meirong ZHANG. From ODE to DDE[J]. Front Math Chin, 2009, 4(3): 585-598.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0034-4
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I3/585
1 Adams R A, Fournier J J F. Sobolev Spaces. 2nd Ed. Pure Appl Math (Amsterdam), Vol 140 . Amsterdam: Elsevier/Academic Press, 2003
2 Arnold V I. Mathematical Methods of Classical Mechanics. Graduate Texts Math, Vol 60 . New York-Heidelberg: Springer-Verlag, 1978
3 Capietto A, Mawhin J, Zanolin F. The coincidence degree of some functionaldifferential operators in spaces of periodic functions and related continuation theorems. In: Delay Differential Equations and Dynamical Systems (Claremont, CA, 1990). Lecture Notes Math, Vol 1475 . Berlin: Springer, 1991, 76-87
4 Capietto A, Mawhin J, Zanolin F. Periodic solutions of some superlinear functional differential equations. In: Yoshizawa T, Kato J, eds. Proc Intern Symp Functional Differential Equations (Kyoto, Japan, 30 Aug–2 Sept, 1990) . Singapore: World Scientific, 1991, 19-31
5 Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Lecture Notes Math, Vol 568 . Berlin-New York: Springer-Verlag, 1977
6 Guo Z, Yu J. Multiplicity results for periodic solutions of delay differential equations via critical point theory. J Differential Equations , 2005, 218: 15-35
doi: 10.1016/j.jde.2005.08.007
7 Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977
8 Jiang M-Y. A Landesman-Lazer type theorem for periodic solutions of the resonant asymmetric p-Laplacian equation. Acta Math Sinica, Engl Ser , 2005, 21: 1219-1228
doi: 10.1007/s10114-004-0459-3
9 Leach P G L, Andropoulos K. The Ermakov equation, a commentary. Appl Anal Discrete Math , 2008, 2: 146-157
doi: 10.2298/AADM0802146L
10 Lei J, Li X, Yan P, Zhang M. Twist character of the least amplitude periodic solution of the forced pendulum. SIAM J Math Anal , 2003, 35: 844-867
doi: 10.1137/S003614100241037X
11 Li J, He X. Proof and generalization of Kaplan-Yorke’s conjecture on periodic solutions of differential delay equations. Sci China, Ser A , 1999, 42: 957-964
doi: 10.1007/BF02880387
12 Llibre J, Ortega R. On the families of periodic orbits of the Sitnikov problem. SIAM J Appl Dynam Syst , 2008, 7: 561-576
doi: 10.1137/070695253
13 Mallet-Paret J, Sell G R. Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J Differential Equations , 1996, 125: 385-440
doi: 10.1006/jdeq.1996.0036
14 Mawhin J. Continuation theorems and periodic solutions of ordinary differential equations. In: Topological Methods in Differential Equations and Inclusions . Dordrecht: Kluwer, 1995, 291-375
15 Meng G, Yan P, Lin X, Zhang M. Non-degeneracy and periodic solutions of semilinear differential equations with deviation. Adv Nonlinear Stud , 2006, 6: 563-590
16 Morris G R. An infinite class of periodic solutions of x"+ 2x3= p(t). Proc Cambridge Phil Soc , 1965, 61: 157-164
doi: 10.1017/S0305004100038743
17 Ortega R, Zhang M. Some optimal bounds for bifurcation values of a superlinear periodic problem. Proc Royal Soc Edinburgh, Sect A , 2005, 135: 119-132
18 Ward J R. Asymptotic conditions for periodic solutions of ordinary differential equations. Proc Amer Math Soc , 1981, 81: 415-420
doi: 10.2307/2043477
19 Whyburn G T. Analytic Topology. Amer Math Soc Colloq Publ, Vol 28 . New York: Amer Math Soc, 1942
20 Yan P, Zhang M. Higher order non-resonance for differential equations with singularities. Math Meth Appl Sci , 2003, 26: 1067-1074
doi: 10.1002/mma.413
21 Zhang M. Certain classes of potentials for p-Laplacian to be non-degenerate. Math Nachr , 2005, 278: 1823-1836
doi: 10.1002/mana.200410342
22 Zhang M. Periodic solutions of equations of Emarkov-Pinney type. Adv Nonlinear Stud , 2006, 6: 57-67
[1] Yanmin NIU, Xiong LI. Dynamical behaviors for generalized pendulum type equations with p-Laplacian[J]. Front. Math. China, 2020, 15(5): 959-984.
[2] Xingfan CHEN, Fei GUO, Peng LIU. Existence of periodic solutions for second-order Hamiltonian systems with asymptotically linear conditions[J]. Front. Math. China, 2018, 13(6): 1313-1323.
[3] Xiaoyou LIU. Existence of anti-periodic solutions for hemivariational inequalities[J]. Front. Math. China, 2018, 13(3): 607-618.
[4] Xindong XU. Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential[J]. Front. Math. China, 2018, 13(1): 227-254.
[5] Duokui YAN. A simple existence proof of Schubart periodic orbit with arbitrary masses[J]. Front Math Chin, 2012, 7(1): 145-160.
[6] Jiansheng GENG. Almost periodic solutions for a class of higher dimensional Schr?dinger equations[J]. Front Math Chin, 2009, 4(3): 463-482.
[7] Qiuxiang FENG, Rong YUAN. Existence of almost periodic solutions for neutral delay difference systems[J]. Front Math Chin, 2009, 4(3): 437-462.
[8] BERTI Massimiliano, BOLLE Philippe. Cantor families of periodic solutions for completely resonant wave equations[J]. Front. Math. China, 2008, 3(2): 151-165.
[9] Mu-Fa Chen. Exponential convergence rate in entropy[J]. Front. Math. China, 2007, 2(3): 329-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed