|
|
|
On collocation methods for delay differential and Volterra integral equations with proportional delay |
Emiko ISHIWATA1( ), Yoshiaki MUROYA2 |
| 1. Department of Mathematical Information Science, Tokyo University of Science, Tokyo 162-8601, Japan; 2. Department of Mathematics, Waseda University, Tokyo 169-8555, Japan |
|
|
|
|
Abstract To compute long term integrations for the pantograph differential equation with proportional delay qt, 0 < q ≤ 1: y'(t) = ay(t) + by(qt) + f(t), y(0) = y0, we offer two kinds of numerical methods using special mesh distributions, that is, a rational approximant with ‘quasi-uniform meshes’ (see E. Ishiwata and Y. Muroya [Appl. Math. Comput., 2007, 187: 741-747]) and a Gauss collocation method with ‘quasi-constrained meshes’. If we apply these meshes to rational approximant and Gauss collocation method, respectively, then we obtain useful numerical methods of order p? = 2m for computing long term integrations. Numerical investigations for these methods are also presented.
|
| Keywords
Delay differential equation
proportional delay
collocation
quasiuniform mesh
quasi-constrained mesh
|
|
Corresponding Author(s):
ISHIWATA Emiko,Email:ishiwata@rs.kagu.tus.ac.jp
|
|
Issue Date: 05 March 2009
|
|
| 1 |
Baddour N, Brunner H. Continuous Volterra-Runge-Kutta methods for integral equations with pure delay. Computing , 1993, 50: 213-227 doi: 10.1007/BF02243812
|
| 2 |
Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J Numer Anal , 2002, 22: 529- 536 doi: 10.1093/imanum/22.4.529
|
| 3 |
Bellen A, Brunner H, Maset S, Torelli L. Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays. BIT Numer Math , 2006, 46: 229-247 doi: 10.1007/s10543-006-0055-2
|
| 4 |
Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: Oxford University Press, 2003 doi: 10.1093/acprof:oso/9780198506546.001.0001
|
| 5 |
Brunner H. Iterated collocation methods for Volterra integral equations with delay arguments. Math Comput , 1984, 62: 581-599 doi: 10.2307/2153525
|
| 6 |
Brunner H. On the discretization of differential and Volterra integral equations with variable delay. BIT , 1997, 37: 1-12 doi: 10.1007/BF02510168
|
| 7 |
Brunner H. Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge: Cambridge University Press, 2004
|
| 8 |
Brunner H, Hu Q-Y. Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays. SIAM J Numer Anal , 2005, 43: 1943-1949 doi: 10.1137/040615705
|
| 9 |
Brunner H, Hu Q, Lin Q. Geometric meshes in collocation methods for Volterra integral equations with proportional delays. IMA J Numer Anal , 2001, 21: 783-798 doi: 10.1093/imanum/21.4.783
|
| 10 |
Huang C, Vandewalle S. Discretized stability and error growth of the nonautonomous pantgraph equation. SIAM J Numer Anal , 2005, 42: 2020-2042 doi: 10.1137/S0036142902419296
|
| 11 |
Iserles A. On the generalized pantograph functional-differential equation. Europ J Appl Math , 1993, 4: 1-38 doi: 10.1017/S0956792500000966
|
| 12 |
Ishiwata E. On the attainable order of collocation methods for the neutral functionaldifferential equations with proportional delays. Computing , 2000, 64: 207-222 doi: 10.1007/s006070050044
|
| 13 |
Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Appl Math Comput , 2007, 187: 741-747 doi: 10.1016/j.amc.2006.08.086
|
| 14 |
Ishiwata E, Muroya Y, Brunner H. A super-attainable order in collocation methods for differential equations with proportional delay. Appl Math Comput , 2008, 198: 227-236 doi: 10.1016/j.amc.2007.08.078
|
| 15 |
Liu M Z, Yang Z W, Hu G D. Asymptotical stability of numerical methods with constant stepsize for pantgraph equations. BIT , 2005, 45: 743-759 doi: 10.1007/s10543-005-0022-3
|
| 16 |
Liu M Z, Yang Z W, Xu Y. The stability of modified Runge-Kutta methods for the pantgraph equation. Math Comput , 2006, 75: 1201-1215 doi: 10.1090/S0025-5718-06-01844-8
|
| 17 |
Muroya Y, Ishiwata E, Brunner H. On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math , 2003, 152: 347-366 doi: 10.1016/S0377-0427(02)00716-1
|
| 18 |
Takama N, Muroya Y, Ishiwata E. On the attainable order of collocation methods for delay differential equations with proportional delay. BIT , 2000, 40: 374-394 doi: 10.1023/A:1022351309662
|
| 19 |
Terjéki J. Representation of the solutions to linear pantograph equation. Acta Sci Math (Szeged) , 1995, 60: 705-713
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|