Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (1) : 89-111    https://doi.org/10.1007/s11464-009-0004-x
RESEARCH ARTICLE
On collocation methods for delay differential and Volterra integral equations with proportional delay
Emiko ISHIWATA1(), Yoshiaki MUROYA2
1. Department of Mathematical Information Science, Tokyo University of Science, Tokyo 162-8601, Japan; 2. Department of Mathematics, Waseda University, Tokyo 169-8555, Japan
 Download: PDF(375 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To compute long term integrations for the pantograph differential equation with proportional delay qt, 0 < q ≤ 1: y'(t) = ay(t) + by(qt) + f(t), y(0) = y0, we offer two kinds of numerical methods using special mesh distributions, that is, a rational approximant with ‘quasi-uniform meshes’ (see E. Ishiwata and Y. Muroya [Appl. Math. Comput., 2007, 187: 741-747]) and a Gauss collocation method with ‘quasi-constrained meshes’. If we apply these meshes to rational approximant and Gauss collocation method, respectively, then we obtain useful numerical methods of order p? = 2m for computing long term integrations. Numerical investigations for these methods are also presented.

Keywords Delay differential equation      proportional delay      collocation      quasiuniform mesh      quasi-constrained mesh     
Corresponding Author(s): ISHIWATA Emiko,Email:ishiwata@rs.kagu.tus.ac.jp   
Issue Date: 05 March 2009
 Cite this article:   
Emiko ISHIWATA,Yoshiaki MUROYA. On collocation methods for delay differential and Volterra integral equations with proportional delay[J]. Front Math Chin, 2009, 4(1): 89-111.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0004-x
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I1/89
1 Baddour N, Brunner H. Continuous Volterra-Runge-Kutta methods for integral equations with pure delay. Computing , 1993, 50: 213-227
doi: 10.1007/BF02243812
2 Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J Numer Anal , 2002, 22: 529- 536
doi: 10.1093/imanum/22.4.529
3 Bellen A, Brunner H, Maset S, Torelli L. Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays. BIT Numer Math , 2006, 46: 229-247
doi: 10.1007/s10543-006-0055-2
4 Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: Oxford University Press, 2003
doi: 10.1093/acprof:oso/9780198506546.001.0001
5 Brunner H. Iterated collocation methods for Volterra integral equations with delay arguments. Math Comput , 1984, 62: 581-599
doi: 10.2307/2153525
6 Brunner H. On the discretization of differential and Volterra integral equations with variable delay. BIT , 1997, 37: 1-12
doi: 10.1007/BF02510168
7 Brunner H. Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge: Cambridge University Press, 2004
8 Brunner H, Hu Q-Y. Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays. SIAM J Numer Anal , 2005, 43: 1943-1949
doi: 10.1137/040615705
9 Brunner H, Hu Q, Lin Q. Geometric meshes in collocation methods for Volterra integral equations with proportional delays. IMA J Numer Anal , 2001, 21: 783-798
doi: 10.1093/imanum/21.4.783
10 Huang C, Vandewalle S. Discretized stability and error growth of the nonautonomous pantgraph equation. SIAM J Numer Anal , 2005, 42: 2020-2042
doi: 10.1137/S0036142902419296
11 Iserles A. On the generalized pantograph functional-differential equation. Europ J Appl Math , 1993, 4: 1-38
doi: 10.1017/S0956792500000966
12 Ishiwata E. On the attainable order of collocation methods for the neutral functionaldifferential equations with proportional delays. Computing , 2000, 64: 207-222
doi: 10.1007/s006070050044
13 Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Appl Math Comput , 2007, 187: 741-747
doi: 10.1016/j.amc.2006.08.086
14 Ishiwata E, Muroya Y, Brunner H. A super-attainable order in collocation methods for differential equations with proportional delay. Appl Math Comput , 2008, 198: 227-236
doi: 10.1016/j.amc.2007.08.078
15 Liu M Z, Yang Z W, Hu G D. Asymptotical stability of numerical methods with constant stepsize for pantgraph equations. BIT , 2005, 45: 743-759
doi: 10.1007/s10543-005-0022-3
16 Liu M Z, Yang Z W, Xu Y. The stability of modified Runge-Kutta methods for the pantgraph equation. Math Comput , 2006, 75: 1201-1215
doi: 10.1090/S0025-5718-06-01844-8
17 Muroya Y, Ishiwata E, Brunner H. On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math , 2003, 152: 347-366
doi: 10.1016/S0377-0427(02)00716-1
18 Takama N, Muroya Y, Ishiwata E. On the attainable order of collocation methods for delay differential equations with proportional delay. BIT , 2000, 40: 374-394
doi: 10.1023/A:1022351309662
19 Terjéki J. Representation of the solutions to linear pantograph equation. Acta Sci Math (Szeged) , 1995, 60: 705-713
[1] Yunxia WEI, Yanping CHEN, Xiulian SHI, Yuanyuan ZHANG. Spectral method for multidimensional Volterra integral equation with regular kernel[J]. Front. Math. China, 2019, 14(2): 435-448.
[2] Wenqi YAO,Tiao LU. Numerical comparison of three stochastic methods for nonlinear PN junction problems[J]. Front. Math. China, 2014, 9(3): 659-698.
[3] Ran ZHANG, Benxi ZHU, Hehu XIE. Spectral methods for weakly singular Volterra integral equations with pantograph delays[J]. Front Math Chin, 2013, 8(2): 281-299.
[4] Marek KOLK, Arvet PEDAS. Numerical solution of Volterra integral equations with singularities[J]. Front Math Chin, 2013, 8(2): 239-259.
[5] Xianjuan LI, Tao TANG. Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind[J]. Front Math Chin, 2012, 7(1): 69-84.
[6] Yuming CHEN, Qingwen HU, Jianhong WU, . Second-order differentiability with respect to parameters for differential equations with adaptive delays[J]. Front. Math. China, 2010, 5(2): 221-286.
[7] Meirong ZHANG. From ODE to DDE[J]. Front Math Chin, 2009, 4(3): 585-598.
[8] Ishtiaq ALI, Hermann BRUNNER, Tao TANG. Spectral methods for pantograph-type differential and integral equations with multiple delays[J]. Front Math Chin, 2009, 4(1): 49-61.
[9] Filomena TEODORO, Pedro M. LIMA, Neville J. FORD, Patricia M. LUMB. New approach to the numerical solution of forward-backward equations?[J]. Front Math Chin, 2009, 4(1): 155-168.
[10] Hermann BRUNNER. Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays[J]. Front Math Chin, 2009, 4(1): 3-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed