Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2009, Vol. 4 Issue (3) : 495-521    https://doi.org/10.1007/s11464-009-0031-7
RESEARCH ARTICLE
How many consumer levels can survive in a chemotactic food chain?
Jing LIU1, Chunhua OU2()
1. Department of Mathematics, Dalian Maritime University, Dalian 116024, China; 2. Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, A1C 5S7, Canada
 Download: PDF(615 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the effect and the impact of predator-prey interactions, diffusivity and chemotaxis on the ability of survival of multiple consumer levels in a predator-prey microbial food chain. We aim at answering the question of how many consumer levels can survive from a dynamical system point of view. To solve this standing issue on food-chain length, first we construct a chemotactic food chain model. A priori bounds of the steady state populations are obtained. Then under certain sufficient conditions combining the effect of conversion efficiency, diffusivity and chemotaxis parameters, we derive the co-survival of all consumer levels, thus obtaining the food chain length of our model. Numerical simulations not only confirm our theoretical results, but also demonstrate the impact of conversion efficiency, diffusivity and chemotaxis behavior on the survival and stability of various consumer levels.

Keywords Food chain length      chemotaxis      stability      priori estimates      fixedpoint index theory     
Corresponding Author(s): OU Chunhua,Email:ou@mun.ca   
Issue Date: 05 September 2009
 Cite this article:   
Jing LIU,Chunhua OU. How many consumer levels can survive in a chemotactic food chain?[J]. Front Math Chin, 2009, 4(3): 495-521.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-009-0031-7
https://academic.hep.com.cn/fmc/EN/Y2009/V4/I3/495
1 Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Review , 1976, 18: 620-709
doi: 10.1137/1018114
2 Bally M, Dung L, Jones D A, Smith H L. Effects of random motility on microbial growth and competition in a flow reactor. SIAM J Appl Math , 1998, 59: 573-596
doi: 10.1137/S0036139997325345
3 Boer M P, Kooi B W, Kooijman S. Multiple attractors and boundary crises in a tri-trophic food chain. Math Biosci , 2001, 169: 109-128
doi: 10.1016/S0025-5564(00)00058-4
4 Butler G J, Hsu S B, Waltman P. A mathematical model of the chemostat with periodic washout rate. SIAM J Appl Math , 1985, 45(3): 435-449
doi: 10.1137/0145025
5 Cantrell R S, Cosner C. Models for predator-prey systems at multiple scales. SIAM Rev , 1996, 38(2): 256-286
doi: 10.1137/1038041
6 Chiu C, Hsu S. Extinction of top-predator in a three-level food-chain model. J Math Biol , 1998, 37(4): 372-380
doi: 10.1007/s002850050134
7 Du Y, Shi J. Allee effect and bistability in a spatially heterogeneous predator-prey model. Trans Amer Math Soc , 2007, 359(9): 4557-4593
doi: 10.1090/S0002-9947-07-04262-6
8 Dunbar S R. Travelling wave solutions of diffusive Lotka-Volterra equations. J Math Biol , 1983, 17(1): 11-32
doi: 10.1007/BF00276112
9 Dung L. Global attractors and steady state solutions for a class of reaction-diffusion systems. J Differential Equations , 1998, 147: 1-29
doi: 10.1006/jdeq.1998.3435
10 Dung L. Coexistence with chemotaxis. SIAM J Math Anal , 2000, 32: 504-521
doi: 10.1137/S0036141099346779
11 Dung L, Smith H L. A parabolic system modeling microbial competition in an unmixed bio-reactor. J Differential Equations , 1996, 130(1): 59-91
doi: 10.1006/jdeq.1996.0132
12 Dung L, Smith H L. Steady states of models of microbial growth and competition with chemotaxis. J Math Anal Appl , 1999, 229: 295-318
doi: 10.1006/jmaa.1998.6167
13 Freedman H I, Ruan S. Hopf bifurcation in three-species food chain models with group defense. Math Biosci , 1992, 111(1): 73-87
doi: 10.1016/0025-5564(92)90079-C
14 Fretwell S D. Food chain dynamics: the central theory of ecology? OIKOS , 1987, 50: 291-301
doi: 10.2307/3565489
15 Gourley S A, Kuang Y. Two-species competition with high dispersal: the winning strategy. Math Biosci Eng , 2005, 2(2): 345-362
16 Herrero M, Velazquez J. Chemotactic collapse for the Keller-Segel model. J Math Biol , 1996, 35: 177-194
doi: 10.1007/s002850050049
17 Hofer T, Sherratt J, Maini P K. Cellular pattern formation during Dictyostelium aggregation. Physica D , 1995, 85: 425-444
doi: 10.1016/0167-2789(95)00075-F
18 Hsu S B, Waltman P. Analysis of a model of two competitors in a chemostat with an external inhibitor. SIAM J Appl Math , 1992, 52(2): 528-540
doi: 10.1137/0152029
19 Hsu S B, Waltman P. On a system of reaction-diffusion equations arising from competition in an unstirred chemostat. SIAM J Appl Math , 1993, 53(4): 1026-1044
doi: 10.1137/0153051
20 Huang J, Lu G, Ruan S. Existence of traveling wave solutions in a diffusive predatorprey model. J Math Biol , 2003, 46(2): 132-152
doi: 10.1007/s00285-002-0171-9
21 Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Math Biol , 1970, 26: 399-415
22 Lauffenburger D, Calcagno P. Competition between two microbial populations in a non-mixed environment: effect of cell random motility. Biotech Bioengrg , 1983, 25: 2103-2125
doi: 10.1002/bit.260250902
23 Lemesle V, Gouze J L. A simple unforced oscillatory growth model in the chemostat. Bull Math Biol , 2008, 70(2): 344-357
doi: 10.1007/s11538-007-9254-5
24 Li B T, Kuang Y. Simple food chain in a Chemostat with distinct removal rates. J Math Anal Appl , 2000, 242: 75-92
doi: 10.1006/jmaa.1999.6655
25 Lin C S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotaxis system. J Differential Equations , 1988, 72: 1-27
doi: 10.1016/0022-0396(88)90147-7
26 Liu J, Zheng S N. A Reaction-diffusion system arising from food chain in an unstirred Chemostat. J Biomath , 2002, 3: 263-272
27 Martiel J L, Goldbeter A. A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys J , 1987, 52: 807-828
doi: 10.1016/S0006-3495(87)83275-7
28 Monk P B, Othmer H G. Cyclic AMP oscillations in suspensions of Dictyostelium discoideum. Proc Roy Soc Lond B , 1989, 240: 555-589
29 Muratori S, Rinaldi S. Low- and high-frequency oscillations in three-dimensional food chain systems. SIAM J Appl Math , 1992, 52(6): 1688-1706
doi: 10.1137/0152097
30 Murray J D. Mathematical Biology, I and II. New York: Springer-Verlag, 2002
31 Odum E P. Trophic structure and productivity of Silver Springs. Florida, -Ecol Monogr , 1957, 27: 55-112
doi: 10.2307/1948571
32 Ou C, Wu J. Spatial spread of rabies revisited: influence of age-dependent diffusion on nonlinear dynamics. SIAM J Appl Math , 2006, 67(1): 138-163
doi: 10.1137/060651318
33 Ou C, Wu J. Persistence of wavefronts in delayed nonlocal reaction-diffusion equations. J Differential Equations , 2007, 235(1): 219-261
doi: 10.1016/j.jde.2006.12.010
34 Ou C, Wu J. Traveling wavefronts in a delayed food-limited population model. SIAM J Math Anal , 2007, 39(1): 103-125
doi: 10.1137/050638011
35 Owen M R, Lewis M A. How predation can slow, stop or reverse a prey invasion. Bull Math Bio , 2001, 63: 655-684
doi: 10.1006/bulm.2001.0239
36 Painter K J, Hillen T. Volume-filling and quorum-fensing in models for chemosensitive and movement. Canadian Applied Mathematics Quarterly , 2002, 10: 501-542
37 Pang P Y H,Wang M X. Strategy and stationary pattern in a three-species predatorprey model. Journal of Differential Equations , 2004, 200(2): 245-273
doi: 10.1016/j.jde.2004.01.004
38 Peng R, Shi J, Wang M. Stationary pattern of a ratio-dependent food chain model with diffusion. SIAM J Appl Math , 2007, 67(5): 1479-1503
doi: 10.1137/05064624X
39 Peng R, Wang M X. On multiplicity and stability of positive solutions of a diffusive prey-predator model. Journal of Mathematical Analysis and Applications , 2006, 316(1): 256-268
doi: 10.1016/j.jmaa.2005.04.033
40 Pimm S L, Kitching R L. The determinants of food chain lengths. OIKOS , 1987, 50: 302-307
doi: 10.2307/3565490
41 Post D M. The long and short of food chain length. Trends in Ecology and Evolution , 2002, 17: 269-277
doi: 10.1016/S0169-5347(02)02455-2
42 Potapov A B, Hillen T. Metastability in chemotaxis models. J Dynam Differential Equations , 2005, 17(2): 293-330
doi: 10.1007/s10884-005-2938-3
43 Ruan S, He X. Global stability in chemostat-type competition models with nutrient recycling. SIAM J Appl Math , 1998, 58(1): 170-192
doi: 10.1137/S0036139996299248
44 Smith H L. Competitive coexistence in an oscillating chemostat. SIAM J Appl Math , 1981, 40(3): 498-522
doi: 10.1137/0140042
45 Wang X. Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics. SIAM J Math Anal , 2000, 31(3): 535-560
doi: 10.1137/S0036141098339897
46 Wang Y F, Yin J X. Predator-prey in an unstirred chemostat with periodical input and washout. Nonlinear Analysis: Real World Applications , 2002, 3: 597-610
doi: 10.1016/S1468-1218(01)00051-7
47 Wu J, Nie H, Wolkowicz G S K. A mathematical model of competition for two essential resources in the unstirred chemostat. SIAM J Appl Math , 2004, 65(1): 209-229
doi: 10.1137/S0036139903423285
48 Wu J, Nie H, Wolkowicz G S K. The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat. SIAM J Math Anal , 2007, 38(6): 1860-1885
doi: 10.1137/050627514
49 Wu J, Wolkowicz G S K. A system of resource-based growth models with two resources in the unstirred chemostat. J Differential Equations , 2001, 172(2): 300-332
doi: 10.1006/jdeq.2000.3870
[1] Ze LI. Asymptotic stability of solitons to 1D nonlinear Schrödinger equations in subcritical case[J]. Front. Math. China, 2020, 15(5): 923-957.
[2] Hongzhi HUANG. Fibrations and stability for compact group actions on manifolds with local bounded Ricci covering geometry[J]. Front. Math. China, 2020, 15(1): 69-89.
[3] Guangqiang LAN, Fang XIA. General decay asymptotic stability of neutral stochastic differential delayed equations with Markov switching[J]. Front. Math. China, 2019, 14(4): 793-818.
[4] Liping XU, Jiaowan LUO. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2[J]. Front. Math. China, 2018, 13(6): 1469-1487.
[5] Zhi LI, Litan YAN, Xianghui ZHOU. Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process[J]. Front. Math. China, 2018, 13(1): 87-105.
[6] Zhiqiang ZHOU,Jingtang MA. Lattice Boltzmann methods for solving partial differential equations of exotic option pricing[J]. Front. Math. China, 2016, 11(1): 237-254.
[7] Gengen ZHANG,Aiguo XIAO. Exact and numerical stability analysis of reaction-diffusion equations with distributed delays[J]. Front. Math. China, 2016, 11(1): 189-205.
[8] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[9] Weichao GUO,Jiecheng CHEN. Stability of nonlinear Schrödinger equations on modulation spaces[J]. Front. Math. China, 2014, 9(2): 275-301.
[10] Pengzhan HUANG, Yinnian HE, Xinlong FENG. Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations[J]. Front Math Chin, 2013, 8(4): 837-854.
[11] Xiaochun RONG, Shicheng XU. Stability of almost submetries[J]. Front Math Chin, 2011, 6(1): 137-154.
[12] Mu-Fa CHEN, . Speed of stability for birth-death processes[J]. Front. Math. China, 2010, 5(3): 379-515.
[13] Gaosheng ZHU, Yiming LONG, . Linear stability of some symplectic matrices[J]. Front. Math. China, 2010, 5(2): 361-368.
[14] Qin SHENG. Adaptive decomposition finite difference methods for solving singular problems—A review[J]. Front. Math. China, 2009, 4(4): 599-626.
[15] Qiuxiang FENG, Rong YUAN. Existence of almost periodic solutions for neutral delay difference systems[J]. Front Math Chin, 2009, 4(3): 437-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed