Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (4) : 813-834    https://doi.org/10.1007/s11464-014-0405-3
RESEARCH ARTICLE
Light-tailed behavior of stationary distribution for state-dependent random walks on a strip
Wenming HONG1,Meijuan ZHANG2,*(),Yiqiang Q. ZHAO3
1. School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China
2. School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China
3. School of Mathematics and Statistics, Carleton University, Ottawa, Ont K1S 5B6, Canada
 Download: PDF(199 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider the state-dependent reflecting random walk on a halfstrip. We provide explicit criteria for (positive) recurrence, and an explicit expression for the stationary distribution. As a consequence, the light-tailed behavior of the stationary distribution is proved under appropriate conditions. The key idea of the method employed here is the decomposition of the trajectory of the random walk and the main tool is the intrinsic branching structure buried in the random walk on a strip, which is different from the matrix-analytic method.

Keywords Random walk on a strip      stationary distribution      light-tailed behavior      branching process      recurrence      state-dependent     
Corresponding Author(s): Meijuan ZHANG   
Issue Date: 26 August 2014
 Cite this article:   
Wenming HONG,Meijuan ZHANG,Yiqiang Q. ZHAO. Light-tailed behavior of stationary distribution for state-dependent random walks on a strip[J]. Front. Math. China, 2014, 9(4): 813-834.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0405-3
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I4/813
1 Bolthausen E, Goldsheid I. Recurrence and transience of random walks in random environments on a strip. Comm Math Phys, 2000, 214: 429-447
doi: 10.1007/s002200000279
2 Bright L W, Taylor P G. Equilibrium distributions for level-dependent 1uasi-birth-anddeath processes. In: Chakravarthy S R, Alfa A S, eds. Matrix Analytic Methods in Stochastic Models: Proc of the 1st Int Conf. New York: Marcel Dekker, 1997, 359-375
3 Durrett R. Probability: Theory and Examples. 3rd ed. Belmont: Duxbury, 2004
4 Dwass M. Branching processes in simple random walk. Proc Amer Math Soc, 1975, 51: 270-274
doi: 10.1090/S0002-9939-1975-0370775-4
5 Falin G I, Templeton J G C. Retrial Queues. London: Chapman & Hall, 1997
doi: 10.1007/978-1-4899-2977-8
6 Hong W M, Wang H M. Intrinsic branching structure within (L- 1) random walk in random environment and its applications. Infin Dimens Anal Quantum Probab Relat Top, 2013, 16(1): 1350006 (14 pp)
7 Hong W M, Zhang L. Branching structure for the transient (1,R)-random walk in random environment and its applications. Infin Dimens Anal Quantum Probab Relat Top, 2010, 13: 589-618
doi: 10.1142/S0219025710004188
8 Hong W M, Zhang M J. Branching structure for the transient random walk in a random environment on a strip and its application. Preprint, 2012
9 Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1990
10 Kesten H, Kozlov M V, Spitzer F. A limit law for random walk in a random environment. Compos Math, 1975, 30: 145-168
11 Krause G M. Bounds for the variation of matrix eigenvalues and polynomial roots. Linear Algebra Appl, 1994, 208: 73-82
doi: 10.1016/0024-3795(94)90432-4
12 Latouche G, Ramaswami V. Introduction to Matrix Analytic Methods in Stochastic Modeling. Philadelphia: SIAM, 1999
doi: 10.1137/1.9780898719734
13 Miyazawa M, Zhao Y Q. The stationary tail asymptotics in the GI/G/1 type queue with countably many background states. Adv Appl Probab, 2004, 36(4): 1231-1251
doi: 10.1239/aap/1103662965
14 Ostrowski A. Solution of Equations in Euclidean and Banach Space. New York: Academic Press, Inc, 1973
15 Zhao Y Q. Censoring technique in studying block-structured Markov chains. In: Latouche G, Taylor P, eds. Advances in Algorithmic Methods for Stochastic Models. NJ: Notable Publications, Inc, 2000, 417-433
16 Zhao Y Q, Li W, Braun W J. Censoring, factorizations, and spectral analysis for transition matrices with block-repeating entries. Methodol Comput Appl Probab, 2003, 5: 35-58
doi: 10.1023/A:1024125320911
[1] Xiequan FAN, Haijuan HU, Quansheng LIU. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment[J]. Front. Math. China, 2020, 15(5): 891-914.
[2] Yuhui ZHANG. Criteria on ergodicity and strong ergodicity of single death processes[J]. Front. Math. China, 2018, 13(5): 1215-1243.
[3] Junping LI, Lina ZHANG. MX=M=c Queue with catastrophes and state-dependent control at idle time[J]. Front. Math. China, 2017, 12(6): 1427-1439.
[4] Qi SUN, Mei ZHANG. Harmonic moments and large deviations for supercritical branching processes with immigration[J]. Front. Math. China, 2017, 12(5): 1201-1220.
[5] Hanjun ZHANG,Guoman HE. Domain of attraction of quasi-stationary distribution for one-dimensional diffusions[J]. Front. Math. China, 2016, 11(2): 411-421.
[6] Wenming HONG,Hui YANG,Ke ZHOU. Scaling limit of local time of Sinai’s random walk[J]. Front. Math. China, 2015, 10(6): 1313-1324.
[7] Anyue CHEN,Xiliu LI,HoMing KU. A new approach in analyzing extinction probability of Markov branching process with immigration and migration[J]. Front. Math. China, 2015, 10(4): 733-751.
[8] Hui HE,Zenghu LI,Xiaowen ZHOU. Branching particle systems in spectrally one-sided Lévy processes[J]. Front. Math. China, 2015, 10(4): 875-900.
[9] Junping LI,Xiangxiang HUANG,Juan WANG,Lina ZHANG. Recurrence and decay properties of a star-typed queueing model with refusal[J]. Front. Math. China, 2015, 10(4): 917-932.
[10] Yingqiu LI,Quansheng LIU,Zhiqiang GAO,Hesong WANG. Asymptotic properties of supercritical branching processes in random environments[J]. Front. Math. China, 2014, 9(4): 737-751.
[11] Jinwen CHEN. Limiting process of absorbing Markov chains[J]. Front. Math. China, 2014, 9(4): 753-759.
[12] Fuke WU,George YIN,Tianhai TIAN. Gene regulatory networks driven by intrinsic noise with two-time scales: a stochastic averaging approach[J]. Front. Math. China, 2014, 9(4): 947-963.
[13] Mu-Fa CHEN,Yuhui ZHANG. Unified representation of formulas for single birth processes[J]. Front. Math. China, 2014, 9(4): 761-796.
[14] BI Hongwei. Time to most recent common ancestor for stationary continuous state branching processes with immigration[J]. Front. Math. China, 2014, 9(2): 239-260.
[15] Hui HE, Rugang MA. Limit theorems for flows of branching processes[J]. Front Math Chin, 2014, 9(1): 63-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed