Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2014, Vol. 9 Issue (4) : 761-796    https://doi.org/10.1007/s11464-014-0381-7
RESEARCH ARTICLE
Unified representation of formulas for single birth processes
Mu-Fa CHEN,Yuhui ZHANG()
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China
 Download: PDF(272 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on a new explicit representation of the solution to the Poisson equation with respect to single birth processes, the unified treatment for various criteria on classical problems (including uniqueness, recurrence, ergodicity, exponential ergodicity, strong ergodicity, as well as extinction probability, etc.) for the processes are presented.

Keywords Single birth process      Poisson equation      uniqueness      recurrence      ergodicity      moments of return time     
Corresponding Author(s): Yuhui ZHANG   
Issue Date: 26 August 2014
 Cite this article:   
Mu-Fa CHEN,Yuhui ZHANG. Unified representation of formulas for single birth processes[J]. Front. Math. China, 2014, 9(4): 761-796.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-014-0381-7
https://academic.hep.com.cn/fmc/EN/Y2014/V9/I4/761
1 Anderson W J. Continuous-Time Markov Chains: An Applications-Oriented Approach. New York: Springer-Verlag, 1991
doi: 10.1007/978-1-4612-3038-0
2 Brockwell P J. The extinction time of a general birth and death processes with catastrophes. J Appl Probab, 1986, 23: 851-858
doi: 10.2307/3214459
3 Brockwell P J, Gani J, Resnick S I. Birth, immigration and catastrophe processes. Adv in Appl Probab, 1982, 14: 709-731
doi: 10.2307/1427020
4 Chen M F. Single birth processes. Chin Ann Math Ser B, 1999, 20: 77-82
doi: 10.1142/S0252959999000114
5 Chen M F. Explicit criteria for several types of ergodicity. Chinese J Appl Probab Statist, 2001, 17(2): 1-8
6 Chen M F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2004
7 Chen M F. Speed of stability for birth-death process. Front Math China, 2010, 5(3): 379-516
doi: 10.1007/s11464-010-0068-7
8 Chen M F, Zhang X. Isospectral operators. 2014, preprint
9 Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes. Beijing: Science Press, 1978(in Chinese); English translation, Beijing: Science Press and Springer, 1988
10 Mao Y H. Ergodic degrees for continuous-time Markov chains. Sci China Ser A, 2004, 47(2): 161-174
doi: 10.1360/02ys0306
11 Mao Y H. Eigentime identity for transient Markov chains. J Math Anal Appl, 2006, 315(2): 415-424
doi: 10.1016/j.jmaa.2005.04.068
12 Mao Y H, Zhang Y H. Exponential ergodicity for single-birth processes. J Appl Probab, 2004, 41: 1022-1032
doi: 10.1239/jap/1101840548
13 Reuter G E H. Competition processes. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol 2. 1961, 421-430
14 Wang L D, Zhang Y H. Criteria for zero-exit (-entrance) of single-birth (-death) Q-matrices. Acta Math Sinica (Chin Ser), 2014, to appear (in Chinese)
15 Yan S J, Chen M F. Multidimensional Q-processes. Chin Ann Math Ser B, 1986, 7: 90-110
16 Zhang J K. On the generalized birth and death processes (I). Acta Math Sci Ser B Engl Ed<?Pub Caret?>, 1984, 4: 241-259
17 Zhang Y H. Strong ergodicity for single-birth processes. J Appl Probab, 2001, 38(1): 270-277
doi: 10.1239/jap/996986662
18 Zhang Y H. Moments of the first hitting time for single birth processes. J Beijing Normal Univ, 2003, 39(4): 430-434 (in Chinese)
19 Zhang Y H. The hitting time and stationary distribution for single birth processes. J Beijing Normal Univ, 2004, 40(2): 157-161 (in Chinese)
20 Zhang Y H. Birth-death-catastrophe type single birth Q-matrices. J Beijing Normal Univ, 2011, 47(4): 347-350 (in Chinese)
21 Zhang Y H. Expressions on moments of hitting time for single birth process in infinite and finite space. J Beijing Normal Univ, 2013, 49(5): 445-452 (in Chinese)
[1] Yuan SHAN. Existence and multiplicity results for nonlinear Schrödinger-Poisson equation with general potential[J]. Front. Math. China, 2020, 15(6): 1189-1200.
[2] Huaiyu JIAN, Hongbo ZENG. Existence and uniqueness for variational problem from progressive lens design[J]. Front. Math. China, 2020, 15(3): 491-505.
[3] Yuhui ZHANG. Moments of first hitting times for birth-death processes on trees[J]. Front. Math. China, 2019, 14(4): 833-854.
[4] Yuhui ZHANG. Criteria on ergodicity and strong ergodicity of single death processes[J]. Front. Math. China, 2018, 13(5): 1215-1243.
[5] Dongdong LIU, Wen LI, Michael K. NG, Seak-Weng VONG. Uniqueness and perturbation bounds for sparse non-negative tensor equations[J]. Front. Math. China, 2018, 13(4): 849-874.
[6] Yuanyuan LIU, Yanhong SONG. Integral-type functionals of first hitting times for continuous-time Markov chains[J]. Front. Math. China, 2018, 13(3): 619-632.
[7] Junping LI, Lina ZHANG. MX=M=c Queue with catastrophes and state-dependent control at idle time[J]. Front. Math. China, 2017, 12(6): 1427-1439.
[8] Yuanyuan LIU,Yuhui ZHANG. Central limit theorems for ergodic continuous-time Markov chains with applications to single birth processes[J]. Front. Math. China, 2015, 10(4): 933-947.
[9] Junping LI,Xiangxiang HUANG,Juan WANG,Lina ZHANG. Recurrence and decay properties of a star-typed queueing model with refusal[J]. Front. Math. China, 2015, 10(4): 917-932.
[10] Wenming HONG,Meijuan ZHANG,Yiqiang Q. ZHAO. Light-tailed behavior of stationary distribution for state-dependent random walks on a strip[J]. Front. Math. China, 2014, 9(4): 813-834.
[11] Shmuel FRIEDLAND. Best rank one approximation of real symmetric tensors can be chosen symmetric[J]. Front Math Chin, 2013, 8(1): 19-40.
[12] Zhihua CHEN, Qiming YAN. A uniqueness theorem for meromorphic mappings in several complex variables[J]. Front Math Chin, 2012, 7(4): 669-677.
[13] Xiaobin ZHANG. Value sharing of meromorphic functions and some questions of Dyavanal[J]. Front Math Chin, 2012, 7(1): 161-176.
[14] Wei LIU. Ergodicity of transition semigroups for stochastic fast diffusion equations[J]. Front Math Chin, 2011, 6(3): 449-472.
[15] Limei DAI, Jiguang BAO. On uniqueness and existence of viscosity solutions to Hessian equations in exterior domains[J]. Front Math Chin, 2011, 6(2): 221-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed