Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (3) : 595-620    https://doi.org/10.1007/s11464-015-0413-y
RESEARCH ARTICLE
Stochastic Volterra equations driven by fractional Brownian motion
Xiliang FAN1,2,*()
1. Department of Statistics, Anhui Normal University, Wuhu 241003, China
2. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
 Download: PDF(225 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper is devoted to study a class of stochastic Volterra equations driven by fractional Brownian motion. We first prove the Driver type integration by parts formula and the shift Harnack type inequalities. As a direct application, we provide an alternative method to describe the regularities of the law of the solution. Secondly, by using the Malliavin calculus, the Bismut type derivative formula is established, which is then applied to the study of the gradient estimate and the strong Feller property. Finally, we establish the Talagrand type transportation cost inequalities for the law of the solution on the path space with respect to both the uniform metric and the L2-metric.

Keywords Fractional Brownian motion      derivative formula      integration by parts formula      stochastic Volterra equation      Malliavin calculus     
Corresponding Author(s): Xiliang FAN   
Issue Date: 01 April 2015
 Cite this article:   
Xiliang FAN. Stochastic Volterra equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(3): 595-620.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0413-y
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I3/595
1 Alòs E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29: 766-801
https://doi.org/10.1214/aop/1008956692
2 Arnaudon M, Thalmaier A, Wang F Y. Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds. Stochastic Process Appl, 2009, 119: 3653-3670
https://doi.org/10.1016/j.spa.2009.07.001
3 Bao J, Wang F Y, Yuan C. Transportation cost inequalities for neutral functional stochastic equations. arXiv: 1205.2184
4 Bismut J M. Large Deviation and the Malliavin Calculus. Boston: Birkh?user, 1984
5 Bobkov S, Gentil I, Ledoux M. Hypercontractivity of Hamilton-Jacobi equations. J Math Pure Appl, 2001, 80: 669-696
https://doi.org/10.1016/S0021-7824(01)01208-9
6 Coutin L, Decreusefond L. Stochastic differential equations driven by a fractional Brownian motion. Tech Report 97C004, ENST Paris. 1997
7 Coutin L, Qian Z. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab Theory Related Fields, 2002, 122: 108-140
https://doi.org/10.1007/s004400100158
8 Da Prato G, R?ckner M, Wang F Y. Singular stochastic equations on Hilberts space: Harnack inequalities for their transition semigroups. J Funct Anal, 2009, 257: 992-1017
https://doi.org/10.1016/j.jfa.2009.01.007
9 Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge University Press, 1992
https://doi.org/10.1017/CBO9780511666223
10 Decreusefond L, üstünel A S. Stochastic analysis of the fractional Brownian motion. Potential Anal, 1998, 10: 177-214
https://doi.org/10.1023/A:1008634027843
11 Djellout H, Guillin A, Wu L. Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann Probab, 2004, 32: 2702-2731
https://doi.org/10.1214/009117904000000531
12 Driver B. Integration by parts for heat kernel measures revisited. J Math Pures Appl, 1997, 76: 703-737
https://doi.org/10.1016/S0021-7824(97)89966-7
13 Elworthy K D, Li X M. Formulae for the derivatives of heat semigroups. J Funct Anal, 1994, 125: 252-286
https://doi.org/10.1006/jfan.1994.1124
14 Fan X L. Harnack inequality and derivative formula for SDE driven by fractional Brownian motion. Sci China Math, 2013, 561: 515-524
https://doi.org/10.1007/s11425-013-4569-1
15 Fan X L. Harnack-type inequalities and applications for SDE driven by fractional Brownian motion. Stoch Anal Appl, 2014, 32: 602-618
https://doi.org/10.1080/07362994.2014.907745
16 Fang S, Li H, Luo D. Heat semi-group and generalized flows on complete Riemannian manifolds. Bull Sci Math, 2011, 135: 565-600
https://doi.org/10.1016/j.bulsci.2011.05.002
17 Fang S, Shao J. Optimal transport maps for Monge-Kantorovich problem on loop groups. J Funct Anal, 2007, 248: 225-257
https://doi.org/10.1016/j.jfa.2006.11.016
18 Feyel D, Ustunel A S. Measure transport on Wiener space and Girsanov theorem. CRAS Serie I, 2002, 334: 1025-1028
https://doi.org/10.1016/S1631-073X(02)02326-9
19 Feyel D, Ustunel A S. Monge-Kantorovitch problem and Monge-Ampère equation on Wiener space. Probab Theory Related Fields, 2004, 128: 347-385
https://doi.org/10.1007/s00440-003-0307-x
20 Hu Y, Nualart D. Differential equations driven by H?lder continuous functions of order grater than 1/2. Stoch Anal Appl, 2007, 2: 399-413
https://doi.org/10.1007/978-3-540-70847-6_17
21 Lyons T. Differential equations driven by rough signals. Rev Mat Iberoam, 1998, 14: 215-310
https://doi.org/10.4171/RMI/240
22 Ma Y. Transportation inequalities for stochastic differential equations with jumps. Stochastic Process Appl, 2010, 120: 2-21
https://doi.org/10.1016/j.spa.2009.09.012
23 Nikiforov A F, Uvarov V B. Special Functions of Mathematical Physics. Boston: Birkh?user, 1988
https://doi.org/10.1007/978-1-4757-1595-8
24 Nourdin I, Simon T. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist Probab Lett, 2006, 76: 907-912
https://doi.org/10.1016/j.spl.2005.10.021
25 Nualart D. The Malliavin Calculus and Related Topics. 2nd ed. Berlin: Springer, 2006
26 Nualart D, R??canu A. Differential equations driven by fractional Brownian motion. Collect Math, 2002, 53: 55-81
27 Nualart D, Saussereau B. Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process Appl, 2009, 119: 391-409
https://doi.org/10.1016/j.spa.2008.02.016
28 Otto F, Villani C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J Funct Anal, 2000, 173: 361-400
https://doi.org/10.1006/jfan.1999.3557
29 R?ckner M, Wang F Y. Log-Harnack inequality for stochastic differential equations in Hilbert spaces and its consequence. Infin Dimens Anal Quantum Probab Relat Top, 2010, 13: 27-37
https://doi.org/10.1142/S0219025710003936
30 Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives, Theory and Applications. Yvendon: Gordon and Breach Science Publishers, 1993
31 Saussereau B. Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion. Bernoulli, 2012, 18: 1-23
https://doi.org/10.3150/10-BEJ324
32 Talagrand M. Transportation cost for Gaussian and other product measures. Geom Funct Anal, 1996, 6: 587-600
https://doi.org/10.1007/BF02249265
33 üstünel A S. An Introduction to Analysis on Wiener Space. Lecture Notes in Math, Vol 1610. Berlin: Springer-Verlag, 1995
34 Wang F Y. Transportation cost inequalities on path spaces over Riemannian manifolds. Illinois J Math, 2002, 46: 1197-1206
35 Wang F Y. Probability distance inequalities on Riemannian manifolds and path spaces. J Funct Anal, 2004, 206: 167-190
https://doi.org/10.1016/S0022-1236(02)00100-3
36 Wang F Y. Harnack inequalities on manifolds with boundary and applications. J Math Pures Appl, 2010, 94: 304-321
https://doi.org/10.1016/j.matpur.2010.03.001
37 Wang F Y. Coupling and applications. In: Zhang T S, Zhou X Y, eds. Stochastic Analysis and Applications to Finance. Singapore: World Scientific, 2012, 411-424
https://doi.org/10.1142/9789814383585_0020
38 Wang F Y. Integration by parts formula and shift Harnack inequality for stochastic equations. Ann Probab, 2014, 42: 994-1019
https://doi.org/10.1214/13-AOP875
39 Wang F Y. Integration by parts formula and applications for SDEs with Lévy noise. arXiv: 1308.5799
40 Wang F Y, Xu L. Derivative formulae and applications for hyperdissipative stochastic Navier-Stokes/Burgers equations. Infin Dimens Anal Quantum Probab Relat Top, 2012, 15: 1-19
https://doi.org/10.1142/S0219025712500208
41 Wang F Y, Zhang X. Derivative formulae and applications for degenerate diffusion semigroups. J Math Pures Appl, 2013, 99: 726-740
https://doi.org/10.1016/j.matpur.2012.10.007
42 Wu L. Transport inequalities for stochastic differential equations of pure jumps. Ann Inst Henri Poincaré Probab Stat, 2010, 46: 465-479
https://doi.org/10.1214/09-AIHP320
43 Wu L, Zhang Z. Talagrand’s T2-transportation inequality w.r.t. a uniform metric for diffusions. Acta Math Appl Sin Engl Ser, 2004, 20: 357-364
https://doi.org/10.1007/s10255-004-0175-x
44 Z?hle M. Integration with respect to fractal functions and stochastic calculus I. Probab Theory Related Fields, 1998, 111: 333-374
https://doi.org/10.1007/s004400050171
45 Zhang S Q. Shift Harnack inequality and integration by part formula for semilinear SPDE. arXiv: 1208.2425
46 Zhang S Q. Harnack inequality for semilinear SPDEs with multiplicative noise. Statist Probab Lett, 2013, 83: 1184-1192
https://doi.org/10.1016/j.spl.2013.01.009
47 Zhang S Q. Harnack inequalities for 1-d stochastic Klein-Gordon type equations. arXiv: 1310.8391
48 Zhang X. Stochastic flows and Bismut formulas for stochastic Hamiltonian systems. Stochastic Process Appl, 2010, 120: 1929-1949
https://doi.org/10.1016/j.spa.2010.05.015
49 Zhang X. Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. J Funct Anal, 2010, 258: 1361-1425
https://doi.org/10.1016/j.jfa.2009.11.006
[1] Liping XU, Jiaowan LUO. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2[J]. Front. Math. China, 2018, 13(6): 1469-1487.
[2] Xiaobin SUN, Yingchao XIE. Smooth densities for SDEs driven by subordinated Brownian motion with Markovian switching[J]. Front. Math. China, 2018, 13(6): 1447-1467.
[3] Yulin SONG. Density functions of doubly-perturbed stochastic differential equations with jumps[J]. Front. Math. China, 2018, 13(1): 161-172.
[4] Hongshuai DAI, Guangjun SHEN, Lingtao KONG. Limit theorems for functionals of Gaussian vectors[J]. Front. Math. China, 2017, 12(4): 821-842.
[5] Shaoqin ZHANG. Shift Harnack inequality and integration by parts formula for semilinear stochastic partial differential equations[J]. Front. Math. China, 2016, 11(2): 461-496.
[6] Zhi LI,Jiaowan LUO. Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion[J]. Front. Math. China, 2015, 10(2): 303-321.
[7] Yong REN,Tingting HOU,R. SAKTHIVEL. Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay[J]. Front. Math. China, 2015, 10(2): 351-365.
[8] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[9] Guangjun SHEN, Litan YAN. Asymptotic behavior for bi-fractional regression models via Malliavin calculus[J]. Front Math Chin, 2014, 9(1): 151-179.
[10] Tomás CARABALLO, Mamadou Abdoul DIOP. Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion[J]. Front Math Chin, 2013, 8(4): 745-760.
[11] Xiangjun WANG, Jingjun GUO, Guo JIANG. Collision local times of two independent fractional Brownian motions[J]. Front Math Chin, 2011, 6(2): 325-338.
[12] Jinqiao DUAN. Stochastic modeling of unresolved scales in complex systems[J]. Front Math Chin, 2009, 4(3): 425-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed