Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (1) : 27-46    https://doi.org/10.1007/s11464-015-0491-x
RESEARCH ARTICLE
Maxima and sum for discrete and continuous time Gaussian processes
Yang CHEN1,Zhongquan TAN2,*()
1. School of Mathematics and Physics, Suzhou University of Science and Technology,Suzhou 215009, China
2. College of Mathematics, Physics and Information Engineering, Jiaxing University,Jiaxing 314001, China
 Download: PDF(179 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the asymptotic relation among the maximum of continuous weakly and strongly dependent stationary Gaussian process, the maximum of this process sampled at discrete time points, and the partial sum of this process. It is shown that these two extreme values and the sum are asymptotically independent if the grid of the discrete time points is sufficiently sparse and the Gaussian process is weakly dependent, and asymptotically dependent if the grid points are Pickands grids or dense grids.

Keywords Continuous time process      dependence      discrete time process      extreme value      Gaussian process      sum     
Corresponding Author(s): Zhongquan TAN   
Issue Date: 02 December 2015
 Cite this article:   
Yang CHEN,Zhongquan TAN. Maxima and sum for discrete and continuous time Gaussian processes[J]. Front. Math. China, 2016, 11(1): 27-46.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0491-x
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I1/27
1 Hashorva E, Tan Z Q. Piterbarg’s max-discretisation theorem for stationary vector Gaussian processes observed on different grids. Statistics, 2015, 49: 338–360
https://doi.org/10.1080/02331888.2014.982653
2 Ho H C, Hsing T. On the asymptotic joint distribution of the sum and maximum of stationary normal random variables. J Appl Probab, 1996, 33: 138–145
https://doi.org/10.2307/3215271
3 Ho H C, McCormick W P. Asymptotic distribution of sum and maximum for Gaussian processes. J Appl Probab, 1999, 36: 1031–1044
https://doi.org/10.1239/jap/1032374753
4 Hu A P, Peng Z X, Qi Y C. Joint behavior of point process of exceedances and partial sum from a Gaussian sequence. Metrika, 2009, 70: 279–295
https://doi.org/10.1007/s00184-008-0192-5
5 Hüsler J. Dependence between extreme values of discrete and continuous time locally stationary Gaussian processes. Extremes, 2004, 7: 179–190
https://doi.org/10.1007/s10687-005-6199-7
6 Hüsler J, Piterbarg V. Limit theorem for maximum of the storage process with fractional Brownian motion as input. Stochastic Process Appl, 2004, 114: 231–250
https://doi.org/10.1016/j.spa.2004.07.002
7 Leadbetter M R, Lindgren G, Rootz′en H. Extremes and Related Properties of Random Sequences and Processes. Series in Statistics. New York: Springer, 1983
https://doi.org/10.1007/978-1-4612-5449-2
8 McCormick W P, Qi Y. Asymptotic distribution for the sum and maximum of Gaussian processes. J Appl Probab, 2000, 37: 958–971
https://doi.org/10.1239/jap/1014843076
9 Mittal Y, Ylvisaker D. Limit distribution for the maximum of stationary Gaussian processes. Stochastic Process Appl, 1975, 3: 1–18
https://doi.org/10.1016/0304-4149(75)90002-2
10 Peng Z X, Nadarajah S. On the joint limiting distribution of sums and maxima of stationary normal sequence. Theory Probab Appl, 2003, 47: 706–708
https://doi.org/10.1137/S0040585X97980142
11 Peng Z X, Tong J J, Weng Z C. Joint limit distributions of exceedances point processes and partial sums of Gaussian vector sequence. Acta Math Sin (Engl Ser), 2012, 28: 1647–1662
https://doi.org/10.1007/s10114-012-0001-y
12 Pickands J III. Asymptotic properties of the maximum in a stationary Gaussian process. Trans Amer Math Soc, 1969, 145: 75–86
13 Piterbarg V I. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Providence: Amer Math Soc, 1996
14 Piterbarg V I. Discrete and continuous time extremes of Gaussian processes. Extremes, 2004, 7: 161–177
https://doi.org/10.1007/s10687-005-6198-8
15 Tan Z Q. The asymptotic relation between the maxima and sums of discrete and continuous time strongly dependent Gaussian processes. Acta Math Appl Sin, 2015,38: 27–36 (in Chinese)
16 Tan Z Q, Hashorva E. On Piterbarg’s max-discretisation theorem for multivariate stationary Gaussian processes. J Math Anal Appl, 2014, 409: 299–314
https://doi.org/10.1016/j.jmaa.2013.07.022
17 Tan Z Q, Hashorva E, Peng Z Q. Asymptotics of maxima of strongly dependent Gaussian processes. J Appl Probab, 2012, 49: 1106–1118
https://doi.org/10.1239/jap/1354716660
18 Tan Z Q, Tang L J. The dependence of extremes values of discrete and continuous time strongly dependent Gaussian processes. Stochastics, 2014, 86: 60–69
https://doi.org/10.1080/17442508.2012.756489
19 Tan Z Q, Wang K Y. On Piterbarg’s max-discretisation theorem for homogeneous Gaussian random fields. J Math Anal Appl, 2015, 429: 969–994
https://doi.org/10.1016/j.jmaa.2015.04.048
20 Tan Z Q, Wang Y B. Extremes values of discrete and continuous time strongly dependent Gaussian processes, Comm Statist Theory Methods, 2013, 42: 2451–2463
https://doi.org/10.1080/03610926.2011.611322
21 Turkman K F. Discrete and continuous time extremes of stationary processes. In: Rao T S, Rao S S, Rao C R, eds. Handbook of Statistics, Vol 30. Time Series Methods and Applications. Amsterdam: Elsevier, 2012, 565–580
https://doi.org/10.1016/b978-0-444-53858-1.00020-x
22 Turkman K F, Turkman M A A, Pereira J M. Asymptotic models and inference for extremes of spatio-temporal data. Extremes, 2010, 13: 375–397
https://doi.org/10.1007/s10687-009-0092-8
[1] Qingfeng ZHU, Lijiao SU, Fuguo LIU, Yufeng SHI, Yong’ao SHEN, Shuyang WANG. Mean-field type forward-backward doubly stochastic differential equations and related stochastic differential games[J]. Front. Math. China, 2020, 15(6): 1307-1326.
[2] Jiangtao PENG, Yongke QU, Yuanlin LI. Inverse problems associated with subsequence sums in GpCp[J]. Front. Math. China, 2020, 15(5): 985-1000.
[3] Wenjia ZHAO. Hua’s theorem on five squares of primes[J]. Front. Math. China, 2020, 15(4): 835-850.
[4] Haibin CHEN, Yiju WANG, Guanglu ZHOU. High-order sum-of-squares structured tensors: theory and applications[J]. Front. Math. China, 2020, 15(2): 255-284.
[5] Miao LOU. Averages of shifted convolution sums for arithmetic functions[J]. Front. Math. China, 2019, 14(1): 123-134.
[6] Xiaoguang HE. Exponential sums involving automorphic forms for GL(3) over arithmetic progressions[J]. Front. Math. China, 2018, 13(6): 1355-1368.
[7] Haibin CHEN, Yiju WANG. On computing minimal H-eigenvalue of sign-structured tensors[J]. Front. Math. China, 2017, 12(6): 1289-1302.
[8] Min ZHANG, Jinjiang LI. Distribution of cube-free numbers with form [nc][J]. Front. Math. China, 2017, 12(6): 1515-1525.
[9] Nathan SALAZAR, Yangbo YE. Spectral square moments of a resonance sum for Maass forms[J]. Front. Math. China, 2017, 12(5): 1183-1200.
[10] Hongjie SONG, Changqing XU. Neighbor sum distinguishing total chromatic number of K4-minor free graph[J]. Front. Math. China, 2017, 12(4): 937-947.
[11] Xinmei SHEN, Yuqing NIU, Hailan TIAN. Precise large deviations for sums of random vectors with dependent components of consistently varying tails[J]. Front. Math. China, 2017, 12(3): 711-732.
[12] Huan LIU. Sums of Fourier coefficients of cusp forms of level D twisted by exponential functions[J]. Front. Math. China, 2017, 12(3): 655-673.
[13] Claus BAUER. Large sieve inequality with sparse sets of moduli applied to Goldbach conjecture[J]. Front. Math. China, 2017, 12(2): 261-280.
[14] Meng ZHANG. Waring-Goldbach problems for unlike powers with almost equal variables[J]. Front. Math. China, 2016, 11(2): 449-460.
[15] Kinkar Ch. DAS,Sumana DAS,Bo ZHOU. Sum-connectivity index of a graph[J]. Front. Math. China, 2016, 11(1): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed