Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (5) : 1033-1044    https://doi.org/10.1007/s11464-018-0723-y
RESEARCH ARTICLE
Scaling limit theorem for transient random walk in random environment
Wenming HONG1, Hui YANG2()
1. School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China
2. College of Science, Minzu University of China, Beijing 100081, China
 Download: PDF(160 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We construct a sequence of transient random walks in random environments and prove that by proper scaling, it converges to a diffusion process with drifted Brownian potential. To this end, we prove a counterpart of convergence for transient random walk in non-random environment, which is interesting itself.

Keywords Random walk      random environment      diffusion process      Brownian motion with drift     
Corresponding Author(s): Hui YANG   
Issue Date: 29 October 2018
 Cite this article:   
Wenming HONG,Hui YANG. Scaling limit theorem for transient random walk in random environment[J]. Front. Math. China, 2018, 13(5): 1033-1044.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0723-y
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I5/1033
1 Borisov I S, Nikitina N N. The distribution of the number of crossings of a strip by paths of the simplest random walks and of a Wiener process with drift. Theory Probab Appl, 2012, 56: 126–132
https://doi.org/10.1137/S0040585X97985261
2 Brox T. A one-dimensional diffusion process in a Wiener medium. Ann Probab, 1986, 14: 1206–1218
https://doi.org/10.1214/aop/1176992363
3 Comets F, Gantert N, Zeitouni O. Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab Theory Related Fields, 2000, 118: 65–114
https://doi.org/10.1007/s004400000074
4 Dembo A, Peres Y, Zeitouni O. Tail estimates for one-dimensional random walk in random environment. Comm Math Phys, 1996, 181: 667–683
https://doi.org/10.1007/BF02101292
5 Durrett R. Probability: Theory and Examples. 3rd ed. Belmont: Brooks/Cole-Thomson Learning, 2004
6 Ethier S N, Kurtz T G. Markov Processes: Characterization and Convergence. 2nd ed. Wiley Ser Probab Stat. Hoboken: Wiley, 2005
7 Greven A, den Hollander F. Large deviations for a random walk in random environment. Ann Probab, 1994, 22: 1381–1428
https://doi.org/10.1214/aop/1176988607
8 Hu Y, Shi Z, Yor M. Rates of convergence of diffusions with drifted Brownian potentials. Trans Amer Math Soc, 1999, 351: 3915–3934
https://doi.org/10.1090/S0002-9947-99-02421-6
9 Kawazu K, Tanaka H. A diffusion process in a Brownian environment with drift. J Math Soc Japan, 1997, 49: 189–211
https://doi.org/10.2969/jmsj/04920189
10 Kesten H, Kozlov M V, Spitzer F. A limit law for random walk in random environment. Compos Math, 1975, 30: 145–168
11 Kurtz T G. Approximation of Population Processes. Philadelphia: SIAM, 1981
https://doi.org/10.1137/1.9781611970333
12 Schumacher S. Diffusions with random coefficients. Contemp Math, 1985, 41: 351–356
https://doi.org/10.1090/conm/041/814724
13 Seignourel P. Discrete schemes for processes in random media. Probab Theory Related Fields, 2000, 118: 293–322
https://doi.org/10.1007/PL00008743
14 Sinai Y G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab Appl, 1982, 27: 256–268
https://doi.org/10.1137/1127028
15 Stroock DW, Varadhan S R S. Multidimensional Diffusion Processes. Berlin: Springer, 2009
16 Taleb M. Large deviations for a Brownian motion in a drifted Brownian potential. Ann Probab, 2001, 29: 1173–1204
https://doi.org/10.1214/aop/1015345601
17 Tanaka H. Diffusion processes in random environments. In: Proceedings of the International Congress of Mathematicians, Vol 2. Basel: Birkhüuser, 1995, 1047–1054
https://doi.org/10.1007/978-3-0348-9078-6_97
18 Zeitouni O. Random walks in random environment. In: Tavaré S, Zeitouni O, eds. Lectures on Probability Theory and Statistics. Lecture Notes in Math, Vol 1837. Berlin: Springer, 2004, 190–312
https://doi.org/10.1007/978-3-540-39874-5_2
[1] Xiequan FAN, Haijuan HU, Quansheng LIU. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment[J]. Front. Math. China, 2020, 15(5): 891-914.
[2] Yingqiu LI, Ye CHEN, Shilin WANG, Zhaohui PENG. Exit identities for diusion processes observed at Poisson arrival times[J]. Front. Math. China, 2020, 15(3): 507-528.
[3] Feng-Yu WANG, Weiwei ZHANG. Nash inequality for diffusion processes associated with Dirichlet distributions[J]. Front. Math. China, 2019, 14(6): 1317-1338.
[4] Jingning LIU, Mei ZHANG. Critical survival barrier for branching random walk[J]. Front. Math. China, 2019, 14(6): 1259-1280.
[5] Wenming HONG,Hui YANG,Ke ZHOU. Scaling limit of local time of Sinai’s random walk[J]. Front. Math. China, 2015, 10(6): 1313-1324.
[6] Xiaocui MA,Fubao XI. Large deviations for empirical measures of switching diffusion processes with small parameters[J]. Front. Math. China, 2015, 10(4): 949-963.
[7] Yutao MA,Yingzhe WANG. Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients[J]. Front. Math. China, 2015, 10(4): 965-984.
[8] Fuqing GAO. Laws of iterated logarithm for transient random walks in random environments[J]. Front. Math. China, 2015, 10(4): 857-874.
[9] Guangjun SHEN,Xiuwei YIN,Dongjin ZHU. Weak convergence to Rosenblatt sheet[J]. Front. Math. China, 2015, 10(4): 985-1004.
[10] Yingqiu LI,Quansheng LIU,Zhiqiang GAO,Hesong WANG. Asymptotic properties of supercritical branching processes in random environments[J]. Front. Math. China, 2014, 9(4): 737-751.
[11] Ichiro SHIGEKAWA. Dual ultracontractivity and its applications[J]. Front. Math. China, 2014, 9(4): 899-928.
[12] Chunmao HUANG,Xingang LIANG,Quansheng LIU. Branching random walks with random environments in time[J]. Front. Math. China, 2014, 9(4): 835-842.
[13] Wenming HONG,Meijuan ZHANG,Yiqiang Q. ZHAO. Light-tailed behavior of stationary distribution for state-dependent random walks on a strip[J]. Front. Math. China, 2014, 9(4): 813-834.
[14] Changjun YU,Yuebao WANG. Tail behavior of supremum of a random walk when Cramér’s condition fails[J]. Front. Math. China, 2014, 9(2): 431-453.
[15] Zhichao SHAN, Dayue CHEN. Voter model in a random environment in ?d[J]. Front Math Chin, 2012, 7(5): 895-905.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed