Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (2) : 345-379    https://doi.org/10.1007/s11464-021-0909-6
RESEARCH ARTICLE
Computing top eigenpairs of Hermitizable matrix
Mu-Fa CHEN1,2,3(), Zhi-Gang JIA1,4, Hong-Kui PANG1,4
1. Research Institute of Mathematical Science, Jiangsu Normal University, Xuzhou 221116, China
2. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
3. Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China
4. School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
 Download: PDF(653 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The top eigenpairs at the title mean the maximal, the submaximal, or a few of the subsequent eigenpairs of an Hermitizable matrix. Restricting on top ones is to handle with the matrices having large scale, for which only little is known up to now. This is different from some mature algorithms, that are clearly limited only to medium-sized matrix for calculating full spectrum. It is hoped that a combination of this paper with the earlier works, to be seen soon, may provide some effective algorithms for computing the spectrum in practice, especially for matrix mechanics.

Keywords Hermitizable      Householder transformation      birth-death matrix      isospectral matrices      top eigenpairs      algorithm     
Corresponding Author(s): Mu-Fa CHEN   
Issue Date: 01 June 2021
 Cite this article:   
Mu-Fa CHEN,Zhi-Gang JIA,Hong-Kui PANG. Computing top eigenpairs of Hermitizable matrix[J]. Front. Math. China, 2021, 16(2): 345-379.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0909-6
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I2/345
1 Z H Cao. Matrix Eigenvalue Problem. Shanghai: Shanghai Scientific & Technical Publishers, 1983 (in Chinese)
2 M F Chen. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
3 M F Chen. Efficient initials for computing maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418
https://doi.org/10.1007/s11464-016-0573-4
4 M F Chen. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043
https://doi.org/10.1007/s11464-017-0658-8
5 M F Chen. Hermitizable, isospectral complex matrices or differential operators. Front Math China, 2018, 13(6): 1267–1311
https://doi.org/10.1007/s11464-018-0716-x
6 M F Chen. On spectrum of Hermitizable tridiagonal matrices. Front Math China, 2020, 15(2): 285–303
https://doi.org/10.1007/s11464-020-0832-2
7 M F Chen, Y S Li. Development of powerful algorithm for maximal eigenpair. Front Math China, 2019, 14(3): 493–519
https://doi.org/10.1007/s11464-019-0769-5
8 K L Chung, W M Yan. The complex Householder transform. IEEE Trans Signal Process, 1997, 45(9): 2374–2376
https://doi.org/10.1109/78.622959
9 G H Golub, C F Van Loan. Matrix Computations. 4th ed. Baltimore: The Johns Hopkins Univ Press, 2013
10 A S Householder. Unitary triangularization of a nonsymmetric matrix. J Assoc Comput Mach, 1958, 5: 339–342
https://doi.org/10.1145/320941.320947
11 E X Jiang. Symmetric Matrix Computation. Shanghai: Shanghai Scientific & Technical Publishers, 1984 (in Chinese)
12 C Min. A new understanding of the QR method. J Korean Soc Ind Appl Math, 2010, 14(1): 29–34
13 A Niño, C Muñoz-Caro, S Reyes. A concurrent object-oriented approach to the eigen- problem treatment in shared memory multicore environments. Lecture Notes in Computer Sci, Vol 6782. Cham: Springer, 2011, 630–642
https://doi.org/10.1007/978-3-642-21928-3_46
14 B N Parlett. The Symmetric Eigenvalue Problem. Philadelphia: SIAM, 1998
https://doi.org/10.1137/1.9781611971163
15 W H Press, S A Teukolsky, W T Vetterling, B P Flannery. Numerical Recipes. The Art of Scientific Computing. 3rd ed. Cambridge: Cambridge Univ Press, 2007
16 O Shukuzawa, T Suzuki, I Yokota. Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc Japan Acad Ser A, 1996, 72(5): 102–103
https://doi.org/10.3792/pjaa.72.102
17 Z J Wang. Householder transformation for Hermitizable matrix. Master Thesis. Beijing: Beijing Normal Univ, 2018
18 J H Wilkinson. The Algebraic Eigenvalue Problem. Oxford: Oxford Univ Press, 1965
[1] Mu-Fa CHEN, Jin-Yu LI. Hermitizable, isospectral complex second-order differential operators[J]. Front. Math. China, 2020, 15(5): 867-889.
[2] Mu-Fa CHEN. On spectrum of Hermitizable tridiagonal matrices[J]. Front. Math. China, 2020, 15(2): 285-303.
[3] Mu-Fa CHEN, Yue-Shuang LI. Improved global algorithms for maximal eigenpair[J]. Front. Math. China, 2019, 14(6): 1077-1116.
[4] Mu-Fa CHEN, Yue-Shuang LI. Development of powerful algorithm for maximal eigenpair[J]. Front. Math. China, 2019, 14(3): 493-519.
[5] Mu-Fa CHEN. Hermitizable, isospectral complex matrices or differential operators[J]. Front. Math. China, 2018, 13(6): 1267-1311.
[6] Xinzhen ZHANG, Guanglu ZHOU, Louis CACCETTA, Mohammed ALQAHTANI. Approximation algorith ms for nonnegative polynomial optimization problems over unit spheres[J]. Front. Math. China, 2017, 12(6): 1409-1426.
[7] Mu-Fa CHEN. Global algorithms for maximal eigenpair[J]. Front. Math. China, 2017, 12(5): 1023-1043.
[8] Guanli HUANG,Meng ZHOU. Termination of algorithm for computing relative Gr?bner bases and difference differential dimension polynomials[J]. Front. Math. China, 2015, 10(3): 635-648.
[9] Zhiyong GAN,Dingjun LOU,Zanbo ZHANG,Xuelian WEN. Bipartite double cover and perfect 2-matching covered graph with its algorithm[J]. Front. Math. China, 2015, 10(3): 621-634.
[10] Kai ZHANG,Jiachuan ZHANG,Haibao DUAN,Jingzhi LI. Effective algorithms for computing triangular operator in Schubert calculus[J]. Front. Math. China, 2015, 10(1): 221-237.
[11] Dongmei LI, Jinwang LIU, Weijun LIU. Normal projection: deterministic and probabilistic algorithms[J]. Front Math Chin, 2014, 9(1): 93-99.
[12] Liping ZHANG. Linear convergence of an algorithm for largest singular value of a nonnegative rectangular tensor[J]. Front Math Chin, 2013, 8(1): 141-153.
[13] Xing WANG, Dachuan XU, Xinyuan ZHAO. A primal-dual approximation algorithm for stochastic facility location problem with service installation costs[J]. Front Math Chin, 2011, 6(5): 957-964.
[14] Junfeng LU, Zhenyue ZHANG. Convergence analysis of generalized nonlinear inexact Uzawa algorithm for stabilized saddle point problems[J]. Front Math Chin, 2011, 6(3): 473-492.
[15] Yuning YANG, Qingzhi YANG. Singular values of nonnegative rectangular tensors[J]. Front Math Chin, 2011, 6(2): 363-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed