Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2022, Vol. 17 Issue (4) : 689-713    https://doi.org/10.1007/s11464-021-0974-x
RESEARCH ARTICLE
Fast algorithm for viscous Cahn-Hilliard equation
Danxia WANG(), Yaqian LI, Xingxing WANG, Hongen JIA
College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China
 Download: PDF(373 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The main purpose of this paper is to solve the viscous Cahn-Hilliard equation via a fast algorithm based on the two time-mesh (TT-M) finite element (FE) method to ease the problem caused by strong nonlinearities. The TT-M FE algorithm includes the following main computing steps. First, a nonlinear FE method is applied on a coarse time-mesh τc. Here, the FE method is used for spatial discretization and the implicit second-order θ scheme (containing both implicit Crank-Nicolson and second-order backward difference) is used for temporal discretization. Second, based on the chosen initial iterative value, a linearized FE system on time fine mesh is solved, where some useful coarse numerical solutions are found by Lagrange’s interpolation formula. The analysis for both stability and a priori error estimates is made in detail. Numerical examples are given to demonstrate the validity of the proposed algorithm. Our algorithm is compared with the traditional Galerkin FE method and it is evident that our fast algorithm can save computational time.

Keywords Fast algorithm      two time-mesh (TT-M) finite element (FE) method      viscous Cahn-Hilliard equation      stability      CPU time     
Corresponding Author(s): Danxia WANG   
Issue Date: 19 December 2022
 Cite this article:   
Danxia WANG,Yaqian LI,Xingxing WANG, et al. Fast algorithm for viscous Cahn-Hilliard equation[J]. Front. Math. China, 2022, 17(4): 689-713.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0974-x
https://academic.hep.com.cn/fmc/EN/Y2022/V17/I4/689
1 B Ayuso , B García-Archilla , J Novo . The postprocessed mixed finite element method for the Navier-Stokes equations. SIAM J Numer Anal, 2005, 43 (3): 1091- 1111
https://doi.org/10.1137/040602821
2 A L Bertozzi , S Esedoglu , A Gillette . Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans Image Process, 2006, 16 (1): 285- 291
https://doi.org/10.1109/TIP.2006.887728
3 J W Cahn . Free energy of a nonuniform system II: Thermodynamic basis. J Chem Phys, 1959, 30 (5): 1121- 1124
https://doi.org/10.1063/1.1730145
4 J W Cahn , J E Hilliard . Free energy of a nonuniform system I: Interfacial free energy. J Chem Phys, 1958, 28 (2): 258- 267
https://doi.org/10.1063/1.1744102
5 J W Cahn , J E Hilliard . Free energy of a nonuniform system III: Nucleation in a two component incompressible fluid. J Chem Phys, 1959, 31 (3): 688- 699
https://doi.org/10.1063/1.1730447
6 D Carolan , H M Chong , A Ivankovic , A J Kinloch , A C Taylor . Co-continuous polymer systems: A numerical investigation. Comp Mater Sci, 2015, 98: 24- 33
https://doi.org/10.1016/j.commatsci.2014.10.039
7 C J Chen , K Li , Y P Chen , Y Q Huang . Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv Comput Math, 2019, 45: 611- 630
https://doi.org/10.1007/s10444-018-9628-2
8 R Choksi , M A Peletier , J F Williams . On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional. SIAM J Appl Math, 2009, 69 (6): 1712- 1738
https://doi.org/10.1137/080728809
9 C M Elliott , A M Stuart . Viscous Cahn-Hilliard equation II. Analysis. J Differential Equations, 1996, 128 (2): 387- 414
https://doi.org/10.1006/jdeq.1996.0101
10 P Galenko . Phase-field models with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys Lett A, 2001, 287 (3-4): 190- 197
https://doi.org/10.1016/S0375-9601(01)00489-3
11 P Galenko , D Jou . Diffuse-interface model for rapid phase transformations in nonequilibrium systems.. Phys Rev E, 2005, 71 (4 Pt 2): 046125
https://doi.org/10.1103/PhysRevE.71.046125
12 P Galenko , D Jou . Kinetic contribution to the fast spinodal decomposition controlled by diffusion. Phys A, 2009, 388 (15-16): 3113- 3123
https://doi.org/10.1016/j.physa.2009.04.003
13 P Galenko , V Lebedev . Analysis of the dispersion relation in spinodal decomposition of a binary system. Phil Mag Lett, 2007, 87 (11): 821- 827
https://doi.org/10.1080/09500830701395127
14 P Galenko , V Lebedev . Local nonequilibrium effect on spinodal decomposition in a binary system. Int J Thermophys, 2008, 11 (1): 21- 28
https://doi.org/10.5541/ijot.1034000208
15 P Galenko , V Lebedev . Non-equilibrium effects in spinodal decomposition of a binary system. Phys Lett A, 2008, 372 (7): 985- 989
https://doi.org/10.1016/j.physleta.2007.08.070
16 G H Gao , H W Sun , Z Z Sun . Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J Comput Phys, 2015, 280: 510- 528
https://doi.org/10.1016/j.jcp.2014.09.033
17 Y N He , Y X Liu , T Tang . On large time-stepping methods for the Cahn-Hilliard equation. Appl Numer Math, 2007, 57(5-7): 616- 628
https://doi.org/10.1016/j.apnum.2006.07.026
18 F Hecht , O Pironneau , K Ohtsuka . FreeFEM++. 2010,
19 M Heida . On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system. Internat J Engrg Sci, 2013, 62 (1): 126- 156
https://doi.org/10.1016/j.ijengsci.2012.09.005
20 L L Ju , J Zhang , Q Du . Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations. Comput Mater Sci, 2015: 272- 282
https://doi.org/10.1016/j.commatsci.2015.04.046
21 M B Kania . Upper semicontinuity of global attractors for the perturbed viscous CahnHilliard equations. Topol Methods Nonlinear Anal, 2008, 32 (2): 327- 345
22 W Layton , L Tobiska . A two-level method with backtracking for the Navier-Stokes equations. SIAM J Numer Anal, 1998, 35 (5): 2035- 2054
https://doi.org/10.1137/S003614299630230X
23 N Lecoq , H Zapolsky , P Galenko . Evolution of the structure factor in a hyperbolic model of spinodal decomposition. Eur Phys J Spec Top, 2009, 177 (1): 165- 175
https://doi.org/10.1140/epjst/e2009-01173-8
24 Y B Li , J I Choi , J Kim . A phase-field fluid modeling and computation with interfacial profile correction term.. Commun Nonlinear Sci Numer Simul, 2016, 30 (1-3): 84- 100
https://doi.org/10.1016/j.cnsns.2015.06.012
25 Y B Li , J I Choi , J Kim . Multi-component Cahn-Hilliard system with different boundary conditions in complex domains. J Comput Phys, 2016, 323: 1- 16
https://doi.org/10.1016/j.jcp.2016.07.017
26 Y B Li , J Shin , Y Choi , J Kim . Three-dimensional volume reconstruction from slice data using phase-field models. Comput Vis Image Underst, 2015, 137: 115- 124
https://doi.org/10.1016/j.cviu.2015.02.001
27 Q F Liu , Y R Hou , Z H Wang , J K Zhao . Two-level methods for the Cahn-Hilliard equation. Math Comput Simulation, 2016, 126 (8): 89- 103
https://doi.org/10.1016/j.matcom.2016.03.004
28 Y Liu , Y W Du , H Li , F W Liu , Y J Wang . Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation. Numer Algorithms, 2019, 80 (2): 533- 555
https://doi.org/10.1007/s11075-018-0496-0
29 Y Liu , Z D Yu , H Li , F W Liu , J F Wang . Time two-mesh algorithm combined with finite element method for time fractional water wave model. Int J Heat Mass Tran, 2018, 120 (5): 1132- 1145
https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.118
30 M Marion , J C Xu . Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J Numer Anal, 1995, 32 (4): 1170- 1184
https://doi.org/10.1137/0732054
31 A Novick-Cohen . On the viscous Cahn-Hilliard equation. In: Ball J M, ed. Material Instabilities in Continuum Mechanics and Related Mathematical Problems. Oxford: Oxford Univ Press, 1988 329- 342
32 R Scala , G Schimperna . On the viscous Cahn-Hilliard equation with singular potential and inertial term. AIMS Math, 2016, 1 (1): 64- 76
https://doi.org/10.3934/Math.2016.1.64
33 Y Q Shang . A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations. J Comput Phys, 2013, 233 (1): 210- 226
https://doi.org/10.1016/j.jcp.2012.08.024
34 J Shen , X F Yang . Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin Dyn Syst, 2010, 28 (4): 1669- 1691
https://doi.org/10.3934/dcds.2010.28.1669
35 D X Wang , Q Q Du , J W Zhang , H E Jia . A fast time two-mesh algorithm for Allen-Cahn equation. Bull Malays Math Sci Soc, 2019, 43 (3): 1- 25
https://doi.org/10.1007/s40840-019-00810-z
36 L Wang , H J Yu . Convergence analysis of an unconditionally energy stable linear Crank-Nicolson scheme for the Cahn-Hilliard equation. 2018, 51 (1): 89- 114
https://doi.org/10.1016/j.apnum.2018.10.013
37 Y J Wang , Y Liu , H Li , J F Wang . Finite element method combined with second-order time discrete scheme for nonlinear fractional cable equation. Eur Phys J Plus, 2016, 131 (3): 1- 16
https://doi.org/10.1140/epjp/i2016-16061-3
38 S M Wise , J S Lowengrub , H B Frieboes , V Cristini . Three-dimensional multispecies nonlinear tumor growth—I: model and numerical method. J Theoret Biol, 2008, 253 (3): 524- 543
https://doi.org/10.1016/j.jtbi.2008.03.027
39 J C Xu . Two-grid discretization technique for linear and nonlinear PDEs. SIAM J Numer Anal, 1996, 33 (5): 1759- 1777
https://doi.org/10.1137/S0036142992232949
40 X F Yang , J Zhao , X M He . Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J Comput Appl Math, 2018, 343: 80- 97
https://doi.org/10.1016/j.cam.2018.04.027
41 B L Yin , Y Liu , H Li , S He . Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J Comput Phys, 2019, 379: 351- 372
https://doi.org/10.1016/j.jcp.2018.12.004
42 M A Zaeem , H E Kadiri , M F Horstemeyer , M Khafizov , Z Utegulov . Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study. Curr Appl Phys, 2012, 12 (2): 570- 580
https://doi.org/10.1016/j.cap.2011.09.004
43 Z R Zhang , Z H Qiao . An adaptive time-stepping strategy for the Cahn-Hilliard equation. Commun Comput Phys, 2012, 11 (4): 1261- 1278
https://doi.org/10.4208/cicp.300810.140411s
44 S Zheng , A Milani . Global attractors for singular perturbations of the Cahn-Hilliard equations. J Differential Equations, 2005, 209 (1): 101- 139
https://doi.org/10.1016/j.jde.2004.08.026
45 S W Zhou , M Y Wang . Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multidiscip Optim, 2007, 33 (2): 89- 111
[1] Yanhong YANG, Shengmao FU. Hopf bifurcation of a tumor immune model with time delay[J]. Front. Math. China, 2022, 17(2): 315-335.
[2] Wenjun LIU, Weifan ZHAO. Exponential and polynomial decay for a laminated beam with Fourier's law of heat conduction and possible absence of structural damping[J]. Front. Math. China, 2021, 16(4): 997-1021.
[3] Ze LI. Asymptotic stability of solitons to 1D nonlinear Schrödinger equations in subcritical case[J]. Front. Math. China, 2020, 15(5): 923-957.
[4] Hongzhi HUANG. Fibrations and stability for compact group actions on manifolds with local bounded Ricci covering geometry[J]. Front. Math. China, 2020, 15(1): 69-89.
[5] Guangqiang LAN, Fang XIA. General decay asymptotic stability of neutral stochastic differential delayed equations with Markov switching[J]. Front. Math. China, 2019, 14(4): 793-818.
[6] Liping XU, Jiaowan LUO. Global attractiveness and exponential decay of neutral stochastic functional differential equations driven by fBm with Hurst parameter less than 1/2[J]. Front. Math. China, 2018, 13(6): 1469-1487.
[7] Zhi LI, Litan YAN, Xianghui ZHOU. Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process[J]. Front. Math. China, 2018, 13(1): 87-105.
[8] Gengen ZHANG,Aiguo XIAO. Exact and numerical stability analysis of reaction-diffusion equations with distributed delays[J]. Front. Math. China, 2016, 11(1): 189-205.
[9] Zhiqiang ZHOU,Jingtang MA. Lattice Boltzmann methods for solving partial differential equations of exotic option pricing[J]. Front. Math. China, 2016, 11(1): 237-254.
[10] Junjun LIAO,Xiangjun WANG. Stability of stochastic differential equation with linear fractal noise[J]. Front. Math. China, 2014, 9(3): 495-507.
[11] Weichao GUO,Jiecheng CHEN. Stability of nonlinear Schrödinger equations on modulation spaces[J]. Front. Math. China, 2014, 9(2): 275-301.
[12] Xiaochun RONG, Shicheng XU. Stability of almost submetries[J]. Front Math Chin, 2011, 6(1): 137-154.
[13] Mu-Fa CHEN, . Speed of stability for birth-death processes[J]. Front. Math. China, 2010, 5(3): 379-515.
[14] Gaosheng ZHU, Yiming LONG, . Linear stability of some symplectic matrices[J]. Front. Math. China, 2010, 5(2): 361-368.
[15] Qin SHENG. Adaptive decomposition finite difference methods for solving singular problems—A review[J]. Front. Math. China, 2009, 4(4): 599-626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed