Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2023, Vol. 18 Issue (2) : 95-104    https://doi.org/10.3868/s140-DDD-023-0009-x
SURVEY ARTICLE
Connectivity of wavelets
Dengfeng LI()
School of Mathematics and Physics Science, Wuhan Textile University, Wuhan 430200, China
 Download: PDF(475 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, path-connectivity of the set of some special wavelets in L2(R), which is the topological geometric property of wavelets, is introduced. In particular, the main progress of wavelet connectivity in the past twenty years is reviewed and some unsolved problems are listed. The corresponding results of high dimension case and other cases are also briefly explained.

Keywords Wavelet      MRA wavelet      S–elementary wavelet      frame wavelet      path-connectivity     
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Online First Date: 19 October 2023    Issue Date: 13 November 2023
 Cite this article:   
Dengfeng LI. Connectivity of wavelets[J]. Front. Math. China, 2023, 18(2): 95-104.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-023-0009-x
https://academic.hep.com.cn/fmc/EN/Y2023/V18/I2/95
1 E Azoff, E Ionascu, D Larson. et al.. Direct paths of wavelets. Houston J Math 2003; 29: 737–756
2 J Benedetto, S D Li. The theory of multiresolution analysis frames and applications to filter banks. Appl Comput Harmonic Anal 1998; 5(4): 389–427
3 M Bownik. Connectivity and density in the set of framelets. Math Res Lett 2007; 14: 285–293
4 C Cabrelli, U Molter. Density of the set of generators of wavelet systems. Constr Approx 2007; 26: 65–81
5 O Christensen. An Introduction to Frames and Riesz Bases. 2nd ed. Boston: Birkhäuser, 2016
6 X D Dai, Y N Diao. The path-connectivity of s-elementary tight frame wavelets. J Appl Func Anal 2007; 2(4): 309–316
7 X D Dai, Y N Diao, Q Gu. Frame wavelet sets in R. Proc Amer Math Soc 2001; 129(7): 2045–2055
8 X D Dai, Y N Diao, Q Gu, D G Han. Wavelets with frame multiresolution analysis. J Fourier Anal Appl 2003; 9(1): 39–48
9 X D Dai, Y N Diao, Q Gu, D G Han. The s-elementary frame wavelets are path-connected. Proc Amer Math Soc 2004; 132(9): 2567–2575
10 X D Dai, Y N Diao, X X Guo. On the direct path problem of s-elementary frame wavelets. Sci China Math 2010; 53(12): 3187–3196
11 X D Dai, Y N Diao, Z Y Li. The path-connectivity of s-elementary frame wavelets with frame MRA. Acta Appl Math 2009; 107: 203–210
12 X D Dai, D Larson. Wandering vectors for unitary systems and orthogonal wavelets. Memoirs Amer Math Soc 1998; 134(640): (68 pp)
13 I Daubechies. Ten Lectures on Wavelets. Regional Conference Series in Applied Mathematics, Vol 61. Philadelphia, PA: SIAM, 1992
14 Y N Diao, Z Y Li. On S-elementary super frame wavelets and their path-connectedness. Acta Appl Math 2011; 116: 157–171
15 G Garrigós, E Hernández, H Šikić, F Soria. Further results on the connectivity of Parseval frame wavelets. Proc Amer Math Soc 2006; 134(11): 3211–3221
16 G Garrigós, E Hernández, H. Šikić, F Soria, G Weiss. Connectivity in the set of tight frame wavelets (TFW). Glas Mat 2003; 38(58): 75–98
17 Q Gu. On interpolation families of wavelets. Proc Amer Math Soc 2000; 128(10): 2973–2979
18 B Han. Framelets and Wavelets: Algorithms, Analysis, and Applications. Cham: Birkhäuser, 2017
19 D G Han, D Larson. On the orthogonality of frames and the density and connectivity of wavelet frames. Acta Appl Math 2009; 107: 211–222
20 E Hernández, X Wang, G Weiss. Smoothing minimally supported frequency wavelets I. J Fourier Anal Appl 1996; 2(4): 329–340
21 E Hernández, X Wang, G Weiss. Smoothing minimally supported frequency wavelets II. J Fourier Anal Appl 1997; 3(1): 23–41
22 D Labate, E Wilson. Connectivity in the set of Gabor frames. Appl Comput Harmonic Anal 2005; 18(1): 123–136
23 D Larson. Unitary systems and wavelets sets. In: Qian T, Vai M I, Xu Y, eds. Wavelet Analysis and Applications. Appl Numer Harmonic Anal, Basel: Birkhäuser, 2007, 143–171
24 D F Li. Mathematical Theory of Wavelet Analysis. Beijing: Science Press, 2017 (in Chinese)
25 D F Li, J F Cheng. Some applications of E-wavelet multipliers. Chinese Quart J Math 2004; 19(3): 292–299
26 D F Li, J F Cheng. Construction of MRA E-tight frame wavelets, multipliers and connectivity properties. Int J Wavelets Multiresolut Inf Process 2011; 9(5): 713–729
27 D F LiM Z Xue. Bases and Frames in Banach Spaces. Beijing: Science Press, 2007 (in Chinese)
28 Y Z Li. On a class of bidimensional nonseparable wavelet multipliers. J Math Anal Appl 2002; 270: 543–560
29 Y Z Li, Y Q Xue. The equivalence between seven classes of wavelet multipliers and arcwise connectivity they induce. J Fourier Anal Appl 2013; 19: 1060–1077
30 Z Y Li, X D Dai, Y N Diao. Intrinsic s-elementary Parseval frame multiwavelets in L2(Rd). J Math Anal App 2010; 367: 677–684
31 Z Y Li, X D Dai, Y N Diao, W Huang. The path-connectivity of MRA wavelets in L2(Rd). Illinois J Math 2010; 54: 601–620
32 Z Y Li, X D Dai, Y N Diao, J G Xin. Multipliers, phases and connectivity of MRA wavelets in L2(R2). J Fourier Anal Appl 2010; 16: 155–176
33 Z Y Li, X L Shi. On Parseval super frame wavelets. Appl Math J Chinese Univ 2012; 27(2): 192–204
34 Z Y Li, X L Shi. Parseval frame wavelet multipliers in L2(Rd). Chin Ann Math Ser B 2012; 33: 949–960
35 M Paluszyński, H Šikić, G Weiss, S Xiao. Generalized low pass filters and MRA frame wavelets. J Geom Anal 2001; 11: 311–342
36 M Paluszyński, H Šikić, G Weiss, S Xiao. Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv Comput Math 2003; 18: 297–327
37 D Singh. Path-connectivity of two-interval MSF wavelets. Kyungpook Math J 2011; 51: 293–300
38 D Speegle. S-elementary wavelets are path-connected. Proc Amer Math Soc 1999; 127(1): 223–233
39 Wutam Consortium The. Basic properties of wavelets. J Fourier Anal Appl 1998; 4: 575–594
[1] Dengfeng LI. Linear independence of a finite set of time-frequency shifts[J]. Front. Math. China, 2022, 17(4): 501-509.
[2] Pengtao LI, Wenchang SUN. Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces[J]. Front. Math. China, 2022, 17(3): 373-435.
[3] Xing FU. Equivalent characterizations of Hardy spaces with variable exponent via wavelets[J]. Front. Math. China, 2019, 14(4): 737-759.
[4] Yan FENG,Shouzhi YANG. Construction of two-direction tight wavelet frames[J]. Front. Math. China, 2014, 9(6): 1293-1308.
[5] Junlian XU. Wavelet linear estimations of density derivatives from a negatively associated stratified size-biased sample[J]. Front. Math. China, 2014, 9(3): 623-640.
[6] Dayong LU, Dengfeng LI. Construction of periodic wavelet frames with dilation matrix[J]. Front Math Chin, 2014, 9(1): 111-134.
[7] Fengying ZHOU, Yunzhang LI. Construction of a class of multivariate compactly supported wavelet bases for L2(?d)[J]. Front Math Chin, 2012, 7(1): 177-195.
[8] ZHAO Jiman, PENG Lizhong. Quaternion-valued admissible wavelets and orthogonal decomposition of L2(IG(2),H)[J]. Front. Math. China, 2007, 2(3): 491-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed