1 |
E Azoff, E Ionascu, D Larson. et al.. Direct paths of wavelets. Houston J Math 2003; 29: 737–756
|
2 |
J Benedetto, S D Li. The theory of multiresolution analysis frames and applications to filter banks. Appl Comput Harmonic Anal 1998; 5(4): 389–427
|
3 |
M Bownik. Connectivity and density in the set of framelets. Math Res Lett 2007; 14: 285–293
|
4 |
C Cabrelli, U Molter. Density of the set of generators of wavelet systems. Constr Approx 2007; 26: 65–81
|
5 |
O Christensen. An Introduction to Frames and Riesz Bases. 2nd ed. Boston: Birkhäuser, 2016
|
6 |
X D Dai, Y N Diao. The path-connectivity of s-elementary tight frame wavelets. J Appl Func Anal 2007; 2(4): 309–316
|
7 |
X D Dai, Y N Diao, Q Gu. Frame wavelet sets in R. Proc Amer Math Soc 2001; 129(7): 2045–2055
|
8 |
X D Dai, Y N Diao, Q Gu, D G Han. Wavelets with frame multiresolution analysis. J Fourier Anal Appl 2003; 9(1): 39–48
|
9 |
X D Dai, Y N Diao, Q Gu, D G Han. The s-elementary frame wavelets are path-connected. Proc Amer Math Soc 2004; 132(9): 2567–2575
|
10 |
X D Dai, Y N Diao, X X Guo. On the direct path problem of s-elementary frame wavelets. Sci China Math 2010; 53(12): 3187–3196
|
11 |
X D Dai, Y N Diao, Z Y Li. The path-connectivity of s-elementary frame wavelets with frame MRA. Acta Appl Math 2009; 107: 203–210
|
12 |
X D Dai, D Larson. Wandering vectors for unitary systems and orthogonal wavelets. Memoirs Amer Math Soc 1998; 134(640): (68 pp)
|
13 |
I Daubechies. Ten Lectures on Wavelets. Regional Conference Series in Applied Mathematics, Vol 61. Philadelphia, PA: SIAM, 1992
|
14 |
Y N Diao, Z Y Li. On S-elementary super frame wavelets and their path-connectedness. Acta Appl Math 2011; 116: 157–171
|
15 |
G Garrigós, E Hernández, H Šikić, F Soria. Further results on the connectivity of Parseval frame wavelets. Proc Amer Math Soc 2006; 134(11): 3211–3221
|
16 |
G Garrigós, E Hernández, H. Šikić, F Soria, G Weiss. Connectivity in the set of tight frame wavelets (TFW). Glas Mat 2003; 38(58): 75–98
|
17 |
Q Gu. On interpolation families of wavelets. Proc Amer Math Soc 2000; 128(10): 2973–2979
|
18 |
B Han. Framelets and Wavelets: Algorithms, Analysis, and Applications. Cham: Birkhäuser, 2017
|
19 |
D G Han, D Larson. On the orthogonality of frames and the density and connectivity of wavelet frames. Acta Appl Math 2009; 107: 211–222
|
20 |
E Hernández, X Wang, G Weiss. Smoothing minimally supported frequency wavelets I. J Fourier Anal Appl 1996; 2(4): 329–340
|
21 |
E Hernández, X Wang, G Weiss. Smoothing minimally supported frequency wavelets II. J Fourier Anal Appl 1997; 3(1): 23–41
|
22 |
D Labate, E Wilson. Connectivity in the set of Gabor frames. Appl Comput Harmonic Anal 2005; 18(1): 123–136
|
23 |
D Larson. Unitary systems and wavelets sets. In: Qian T, Vai M I, Xu Y, eds. Wavelet Analysis and Applications. Appl Numer Harmonic Anal, Basel: Birkhäuser, 2007, 143–171
|
24 |
D F Li. Mathematical Theory of Wavelet Analysis. Beijing: Science Press, 2017 (in Chinese)
|
25 |
D F Li, J F Cheng. Some applications of E-wavelet multipliers. Chinese Quart J Math 2004; 19(3): 292–299
|
26 |
D F Li, J F Cheng. Construction of MRA E-tight frame wavelets, multipliers and connectivity properties. Int J Wavelets Multiresolut Inf Process 2011; 9(5): 713–729
|
27 |
D F LiM Z Xue. Bases and Frames in Banach Spaces. Beijing: Science Press, 2007 (in Chinese)
|
28 |
Y Z Li. On a class of bidimensional nonseparable wavelet multipliers. J Math Anal Appl 2002; 270: 543–560
|
29 |
Y Z Li, Y Q Xue. The equivalence between seven classes of wavelet multipliers and arcwise connectivity they induce. J Fourier Anal Appl 2013; 19: 1060–1077
|
30 |
Z Y Li, X D Dai, Y N Diao. Intrinsic s-elementary Parseval frame multiwavelets in L2(Rd). J Math Anal App 2010; 367: 677–684
|
31 |
Z Y Li, X D Dai, Y N Diao, W Huang. The path-connectivity of MRA wavelets in L2(Rd). Illinois J Math 2010; 54: 601–620
|
32 |
Z Y Li, X D Dai, Y N Diao, J G Xin. Multipliers, phases and connectivity of MRA wavelets in L2(R2). J Fourier Anal Appl 2010; 16: 155–176
|
33 |
Z Y Li, X L Shi. On Parseval super frame wavelets. Appl Math J Chinese Univ 2012; 27(2): 192–204
|
34 |
Z Y Li, X L Shi. Parseval frame wavelet multipliers in L2(Rd). Chin Ann Math Ser B 2012; 33: 949–960
|
35 |
M Paluszyński, H Šikić, G Weiss, S Xiao. Generalized low pass filters and MRA frame wavelets. J Geom Anal 2001; 11: 311–342
|
36 |
M Paluszyński, H Šikić, G Weiss, S Xiao. Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv Comput Math 2003; 18: 297–327
|
37 |
D Singh. Path-connectivity of two-interval MSF wavelets. Kyungpook Math J 2011; 51: 293–300
|
38 |
D Speegle. S-elementary wavelets are path-connected. Proc Amer Math Soc 1999; 127(1): 223–233
|
39 |
Wutam Consortium The. Basic properties of wavelets. J Fourier Anal Appl 1998; 4: 575–594
|