Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2024, Vol. 19 Issue (3) : 117-136    https://doi.org/10.3868/s140-DDD-024-0003-x
The acyclic chromatic index of planar graphs without 4-, 6-cycles and intersecting triangles
Yuehua BU1,2, Qi JIA1, Hongguo ZHU1()
1. College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
2. Xingzhi College, Zhejiang Normal University, Jinhua 321004, China
 Download: PDF(926 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A proper edge k-coloring is a mapping ϕ:E(G){1,2,,k} such that any two adjacent edges receive different colors. A proper edge k-coloring ϕ of G is called acyclic if there are no bichromatic cycles in G. The acyclic chromatic index of G, denoted by χa(G), is the smallest integer k such that G is acyclically edge k-colorable. In this paper, we show that if G is a plane graph without 4-, 6-cycles and intersecting 3-cycles, Δ(G)9, then χa(G)Δ(G)+1.

Keywords Acyclic edge coloring      plane graph      cycle     
Corresponding Author(s): Hongguo ZHU   
Online First Date: 18 June 2024    Issue Date: 01 July 2024
 Cite this article:   
Yuehua BU,Qi JIA,Hongguo ZHU. The acyclic chromatic index of planar graphs without 4-, 6-cycles and intersecting triangles[J]. Front. Math. China, 2024, 19(3): 117-136.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.3868/s140-DDD-024-0003-x
https://academic.hep.com.cn/fmc/EN/Y2024/V19/I3/117
1 N Alon, C McDiarmid, B Reed. Acyclic coloring of graphs. Random Structures Algorithms 1991; 2(3): 277–288
2 M Basavaraju, L S Chandran, N Cohen, F Havet, T Mülle. Acyclic edge-coloring of planar graphs. SIAM J Discrete Math 2011; 25(2): 463–478
3 P M S Fialho, B N B de Lima, A Procacci. A new bound on the acyclic edge chromatic number. Discrete Math 2020; 343(11): 112037
4 J Fiamčík. The acyclic chromatic class of a graph. Math. Slovaca 1978; 28(2): 139–145
5 J F Hou, G Z Liu, J L Wu. Acyclic edge coloring of planar graphs without small cycles. Graphs Combin 2012; 28(2): 215–226
6 J F Hou, W T Wang, X R Zhang. Acyclic edge coloring of planar graphs with girth at least 5. Discrete Appl Math 2013; 161(18): 2958–2967
7 D Hudák, F Kardoš, B Lužar, R Soták, R Škrekovski. Acyclic edge coloring of planar graphs with ∆ colors. Discrete Appl Math 2012; 160(9): 1356–1368
8 L KirousisJ Livieratos. The acyclic chromatic index is less than the double of the max degree. 2022, arXiv: 1901.07856v7
9 M MolloyB Reed. Further algorithmic aspects of the local lemma, In: STOC ’98 (Dallas, TX). New York: ACM, 1999, 524−529
10 Q J Shu, Y Chen, S G Han, G H Lin, E Miyano, A Zhang. Acyclic edge coloring conjecture is true on planar graphs without intersecting triangles. Theoret Comput Sci 2021; 882: 77–108
11 Q J Shu, W F Wang, Y Q Wang. Acyclic edge coloring of planar graphs without 5-cycles. Discrete Appl Math 2012; 160(7/8): 1211–1223
12 Q J Shu, W F Wang, Y Q Wang. Acyclic chromatic indices of planar graphs with girth at least 4. J Graph Theory 2013; 73(4): 386–399
13 T Wang, Y Q Zhang. Further result on acyclic chromatic index of planar graphs. Discrete Appl Math 2016; 201: 228–247
14 W F Wang, Q J Shu, K Wang, P Wang. Acyclic chromatic indices of planar graphs with large girth. Discrete Appl Math 2011; 159(12): 1239–1253
15 W F Wang, Q J Shu, Y Q Wang. A new upper bound on the acyclic chromatic indices of planar graphs. European J Combin 2013; 34(2): 338–354
16 W F Wang, Q J Shu, Y Q Wang. Acyclic edge coloring of planar graphs without 4-cycles. J Comb Optim 2013; 25(4): 562–586
17 Y Q Wang, Q J Shu. Acyclic edge coloring of planar graphs. J Jiangsu Norm Univ (Nat Sci Ed) 2014; 32(3): 22–26
18 Y Q Wang, Q J Shu, W F Wang. The acyclic edge coloring of planar graphs without a 3-cycle adjacent to a 4-cycle. Discrete Appl Math 2013; 161(16/17): 2687–2694
19 Y Q Wang, Q J Shu, J L Wu, W W Zhang. Acyclic edge coloring of planar graphs without a 3-cycle adjacent to a 6-cycle. J Comb Optim 2014; 28(3): 692–715
20 Y Q Wang, P Sheng. Improved upper bound for acyclic chromatic index of planar graphs without 4-cycles. J Comb Optim 2014; 27(3): 519–529
21 D Z Xie, Y Q Wu. Acyclic edge coloring of planar graphs without adjacent triangles. J Math Res Appl 2012; 32(4): 407–414
[1] Jufeng ZHANG, Min CHEN, Yiqiao WANG. (3, 1)*-choosability of plane graphs without adjacent single cycles[J]. Front. Math. China, 2024, 19(2): 101-115.
[2] Linlin FU, Jiahao XU, Fan WU. New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Front. Math. China, 2020, 15(3): 467-489.
[3] Xie-Bin CHEN. Matchings extend to Hamiltonian cycles in hypercubes with faulty edges[J]. Front. Math. China, 2019, 14(6): 1117-1132.
[4] Lei LIU. Lagrangian Grassmann manifold Λ(2)[J]. Front. Math. China, 2018, 13(2): 341-365.
[5] Ruipu BAI,Ying LI. Extensions of n-Hom Lie algebras[J]. Front. Math. China, 2015, 10(3): 511-522.
[6] Min ZHOU,Haitao CAO. Almost resolvable maximum packings of complete graphs with 5-cycles[J]. Front. Math. China, 2015, 10(2): 461-475.
[7] Xie-Bin CHEN. Fault-free Hamiltonian cycles passing through a prescribed linear forest in 3-ary n-cube with faulty edges[J]. Front Math Chin, 2014, 9(1): 17-30.
[8] Hao FAN, Guizhen LIU. Properties of Hamilton cycles of circuit graphs of matroids[J]. Front Math Chin, 2013, 8(4): 801-809.
[9] Yanhong BAO, Xianneng DU, Yu YE. Poisson structures on basic cycles[J]. Front Math Chin, 2012, 7(3): 385-396.
[10] Kai TAO. Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus[J]. Front Math Chin, 2012, 7(3): 521-542.
[11] Linping PENG. Quadratic perturbations of a quadratic reversible center of genus one[J]. Front Math Chin, 2011, 6(5): 911-930.
[12] Han REN, Ni CAO, . Finding short cycles in embedded graph in polynomial time[J]. Front. Math. China, 2010, 5(2): 319-327.
[13] Huanxia FA, Xiaoyan ZHENG, Junbo LI, . Second Leibniz cohomology group of twisted N = 2 superconformal algebra[J]. Front. Math. China, 2009, 4(4): 627-635.
[14] Xuanji HOU, . Stable one-dimensional quasi-periodic cocycles on unitary group[J]. Front. Math. China, 2009, 4(4): 651-658.
[15] Jun-Ming XU, Meijie MA. Survey on path and cycle embedding in some networks[J]. Front Math Chin, 2009, 4(2): 217-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed