|
Extensions of n-Hom Lie algebras
Ruipu BAI,Ying LI
Front. Math. China. 2015, 10 (3): 511-522.
https://doi.org/10.1007/s11464-014-0372-8
n-Hom Lie algebras are twisted by n-Lie algebras by means of twisting maps. n-Hom Lie algebras have close relationships with statistical mechanics and mathematical physics. The paper main concerns structures and representations of n-Hom Lie algebras. The concept of nρ-cocycle for an n-Hom Lie algebra (G, [,… , ], α) related to a G-module (V, ρ, β) is proposed, and a sufficient condition for the existence of the dual representation of an n-Hom Lie algebra is provided. From a G-module (V, ρ, β) and an nρ-cocycle θ, an n-Hom Lie algebra (Tθ(V ), [, … , ]θ, γ) is constructed on the vector space Tθ(V ) = G⊕V, which is called the Tθ-extension of an n-Hom Lie algebra (G, [, … , ], α) by the G-module (V, ρ, β).
References |
Related Articles |
Metrics
|
|
Bicomplex Hermitian Clifford analysis
Lin CHEN,Guangbin REN,Haiyan WANG
Front. Math. China. 2015, 10 (3): 523-546.
https://doi.org/10.1007/s11464-015-0410-1
Complex Hermitian Clifford analysis emerged recently as a refinement of the theory of several complex variables, while at the same time, the theory of bicomplex numbers motivated by the bicomplex version of quantum mechanics is also under full development. This stimulates us to combine the Hermitian Clifford analysis with the theory of bicomplex number so as to set up the theory of bicomplex Hermitian Clifford analysis. In parallel with the Euclidean Clifford analysis, the bicomplex Hermitian Clifford analysis is centered around the bicomplex Hermitian Dirac operator |D:C∞(R4n,W4n)→C∞(R4n,W4n), where W4n is the tensor product of three algebras, i.e., the hyperbolic quaternion B^, the bicomplex number B, and the Clifford algebra Rn. The operator D is a square root of the Laplacian in R4n, introduced by the formula D|=∑j=03Kj?Zj with Kjbeing the basis of B^, and ?Zj denoting the twisted Hermitian Dirac operators in the bicomplex Clifford algebra B?R0,4n whose definition involves a delicate construction of the bicomplexWitt basis. The introduction of the operator D can also overturn the prevailing opinion in the Hermitian Clifford analysis in the complex or quaternionic setting that the complex or quaternionic Hermitiean monogenic functions are described by a system of equations instead of by a single equation like classical monogenic functions which are null solutions of Dirac operator. In contrast to the Hermitian Clifford analysis in quaternionic setting, the Poisson brackets of the twisted real Clifford vectors do not vanish in general in the bicomplex setting. For the operator D, we establish the Cauchy integral formula, which generalizes the Martinelli-Bochner formula in the theory of several complex variables.
References |
Related Articles |
Metrics
|
|
Zagreb indices of graphs
Kinkar Ch. DAS,Kexiang XU,Junki NAM
Front. Math. China. 2015, 10 (3): 567-582.
https://doi.org/10.1007/s11464-015-0431-9
The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the vertices, and the second Zagreb index M2(G) is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying molecular graph G. In this paper, we obtain lower and upper bounds on the first Zagreb index M1(G) of G in terms of the number of vertices (n), number of edges (m), maximum vertex degree (Δ), and minimum vertex degree (δ). Using this result, we find lower and upper bounds on M2(G). Also, we present lower and upper bounds on M2(G) +M2(G) in terms of n, m, Δ, and δ, where G denotes the complement of G. Moreover, we determine the bounds on first Zagreb coindex M1(G) and second Zagreb coindex M2(G). Finally, we give a relation between the first Zagreb index and the second Zagreb index of graph G.
References |
Related Articles |
Metrics
|
|
Completable nilpotent Lie superalgebras
Mingzhong WU
Front. Math. China. 2015, 10 (3): 697-713.
https://doi.org/10.1007/s11464-014-0362-x
We discuss a class of filiform Lie superalgebras Ln,m. From these Lie superalgebras, all the other filiform Lie superalgebras can be obtained by deformations. We have decompositions of Der0ˉ(Ln,m) and Der1 (Ln,m). By computing a maximal torus on each Ln,m, we show that Ln,m are completable nilpotent Lie superalgebras. We also view Ln,m as Lie algebras, prove that Ln,m are of maximal rank, and show that Ln,m are completable nilpotent Lie algebras. As an application of the results, we show a Heisenberg superalgebra is a completable nilpotent Lie superalgebra.
References |
Related Articles |
Metrics
|
12 articles
|