|
|
|
Grothendieck rings of a class of Hopf algebras of Kac-Paljutkin type |
Jialei CHEN1, Shilin YANG1( ), Dingguo WANG2 |
1. College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China 2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China |
|
|
|
|
Abstract We construct the Grothendieck rings of a class of dimensional semisimple Hopf Algebras ,which can be viewed as a generalization of the 8 dimensional Kac-Paljutkin Hopf algebra .All irreducible -modules are classified. Furthermore, we describe the Grothendieck rings by generators and relations explicitly.
|
| Keywords
Grothendieck ring
Hopf algebra
irreducible module
|
|
Corresponding Author(s):
Shilin YANG
|
|
Issue Date: 26 March 2021
|
|
| 1 |
A E Alaoui. The character table for a Hopf algebra arising from the Drinfel′d double. J Algebra, 2003, 265: 478–495
https://doi.org/10.1016/S0021-8693(03)00136-4
|
| 2 |
M Beattie, S Dǎscǎlescu, L Grünenfelder. Constructing pointed Hopf algebras by Ore extensions. J Algebra, 2000, 225: 743–770
https://doi.org/10.1006/jabr.1999.8148
|
| 3 |
H Chen, F V Oystaeyen, Y Zhang. The Green rings of Taft algebras. Proc Amer Math Soc, 2014, 142: 765–775
https://doi.org/10.1090/S0002-9939-2013-11823-X
|
| 4 |
C Cibils. A quiver quantum groups. Comm Math Phys, 1993, 157: 459–477
https://doi.org/10.1007/BF02096879
|
| 5 |
H Huang, F V Oystaeyen, Y Yang, Y Zhang. The Green rings of pointed tensor categories of finite type. J Pure Appl Algebra, 2014, 218: 333–342
https://doi.org/10.1016/j.jpaa.2013.06.005
|
| 6 |
H Huang, Y Yang. The Green rings of minimal Hopf quivers. Proc Edinb Math Soc, 2014, 59: 107–141
https://doi.org/10.1017/S0013091515000085
|
| 7 |
G I Kac, V G Paljutkin. Finite ring groups. Trudy Moskov Mat Obshch, 1966, 15: 224–261 (in Russian)
|
| 8 |
C Kassel. Quantum Groups. Grad Texts in Math, Vol 155. New York: Springer-Verlag, 1995
https://doi.org/10.1007/978-1-4612-0783-2
|
| 9 |
L Li, Y Zhang. The Green rings of the Generalized Taft algebras. Contemp Math, 2013, 585: 275–288
https://doi.org/10.1090/conm/585/11618
|
| 10 |
Y Li, N Hu. The Green rings of the 2-rank Taft algebra and its two relatives twisted. J Algebra, 2014, 410: 1–35
https://doi.org/10.1016/j.jalgebra.2014.04.006
|
| 11 |
M Lorenz. Representations of finite-dimensional Hopf algebras. J Algebra, 1997, 188: 476–505
https://doi.org/10.1006/jabr.1996.6827
|
| 12 |
S Majid. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
https://doi.org/10.1017/CBO9780511613104
|
| 13 |
A Masuoka. Semisimple Hopf algebras of dimension 6, 8. Israel J Math, 1995, 92: 361–373
https://doi.org/10.1007/BF02762089
|
| 14 |
S Montgomery. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
https://doi.org/10.1090/cbms/082
|
| 15 |
A N Panov. Ore extensions of Hopf algebras. Math Notes, 2003, 74: 401–410
https://doi.org/10.1023/A:1026115004357
|
| 16 |
D Pansera. A class of semisimple Hopf algebras acting on quantum polynomial algebras. In: Leroy A, Lomp C, López-Permouth S, Oggier F, eds. Rings, Modules and Codes. Contemp Math, Vol 727. Providence: Amer Math Soc, 2019, 303–316
https://doi.org/10.1090/conm/727/14643
|
| 17 |
Y Shi. Finite dimensional Hopf algebras over Kac-Paljutkin algebra H8.Rev Un Mat Argentina, 2019, 60: 265–298
|
| 18 |
D Su, S Yang. Automorphism group of representation ring of the weak Hopf algebra H8 ˜. Czechoslovak Math J, 2018, 68: 1131–1148
|
| 19 |
D Su, S Yang. Green rings of weak Hopf algebras based on generalized Taft algebras. Period Math Hunger, 2018, 76: 229–242
https://doi.org/10.1007/s10998-017-0221-0
|
| 20 |
D Su, S Yang. Representation ring of small quantum group U‾q(sl2).J Math Phys, 2017, 58: 091704
|
| 21 |
M E Sweedler. Hopf Algebras. New York: Benjamin, 1969
|
| 22 |
D Wang, J Zhang, G Zhuang. Primitive cohomology of Hopf algebras. J Algebra, 2016, 464: 36–96
https://doi.org/10.1016/j.jalgebra.2016.07.003
|
| 23 |
Z Wang, L You, H Chen. Representations of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one. Algebr Represent Theory, 2015, 18: 801–830
https://doi.org/10.1007/s10468-015-9517-z
|
| 24 |
S J Witherspoon. The representation ring of the quantum double of a finite group. J Algebra, 1996, 179: 305–329
https://doi.org/10.1006/jabr.1996.0014
|
| 25 |
Y Xu, D Wang, J Chen. Analogues of quantum Schubert cell algebras in PBW- deformations of quantum groups. J Algebra Appl, 2016, 15: 1650179
https://doi.org/10.1142/S0219498816501796
|
| 26 |
S Yang. Representation of simple pointed Hopf algebras. J Algebra Appl, 2004, 3: 91–104
https://doi.org/10.1142/S021949880400071X
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|