|
|
Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets |
Feng Wang,Chen Chen,Daowen Wang( ) |
Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China |
|
|
Abstract microRNAs (miRNAs) are a class of conserved, short, non-coding RNAs that have important and potent capacities to regulate gene expression at the posttranscriptional level. In the past several years, the aberrant expressions of miRNAs in the cardiovascular system have been widely reported, and the crucial roles of some special miRNAs in heart development and pathophysiology of various cardiovascular diseases have been gradually recognized. Recently, it was discovered that miRNAs are presented in peripheral circulation abundantly and stably. This has raised the possibility of using circulating miRNAs as biomarkers for diseases. Furthermore, some studies demonstrated that circulating miRNAs may serve as novel extracellular communicators of cell-cell communication. These discoveries not only reveal the functions of circulating miRNAs in cardiovascular system but also inform the development of miRNAs therapeutic strategies. In this review, we discuss the potential roles of circulating miRNAs in a variety of cardiovascular diseases from biomarkers to therapeutic targets to clearly understand the roles of circulating miRNAs in cardiovascular system.
|
Keywords
microRNA
cardiovascular disease
biomarkers
therapeutic target
|
Corresponding Author(s):
Daowen Wang
|
Just Accepted Date: 06 November 2014
Online First Date: 01 December 2014
Issue Date: 18 December 2014
|
|
1 |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell2004; 116(2): 281–297
https://doi.org/10.1016/S0092-8674(04)00045-5
pmid: 14744438
|
2 |
Ambros V. The functions of animal microRNAs. Nature2004; 431(7006): 350–355
https://doi.org/10.1038/nature02871
pmid: 15372042
|
3 |
Papageorgiou N, Tousoulis D, Androulakis E, Siasos G, Briasoulis A, Vogiatzi G, Kampoli AM, Tsiamis E, Tentolouris C, Stefanadis C. The role of microRNAs in cardiovascular disease. Curr Med Chem2012; 19(16): 2605–2610
https://doi.org/10.2174/092986712800493048
pmid: 22489721
|
4 |
Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J2002; 21(17): 4663–4670
https://doi.org/10.1093/emboj/cdf476
pmid: 12198168
|
5 |
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA2004; 10(12): 1957–1966
https://doi.org/10.1261/rna.7135204
pmid: 15525708
|
6 |
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev2003; 17(24): 3011–3016
https://doi.org/10.1101/gad.1158803
pmid: 14681208
|
7 |
Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science2004; 303(5654): 95–98
https://doi.org/10.1126/science.1090599
pmid: 14631048
|
8 |
Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA2004; 10(2): 185–191
https://doi.org/10.1261/rna.5167604
pmid: 14730017
|
9 |
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol2009; 10(2): 126–139
https://doi.org/10.1038/nrm2632
pmid: 19165215
|
10 |
Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell2006; 125(6): 1111–1124
https://doi.org/10.1016/j.cell.2006.04.031
pmid: 16777601
|
11 |
Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol2007; 17(3): 118–126
https://doi.org/10.1016/j.tcb.2006.12.007
pmid: 17197185
|
12 |
Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature2010; 466(7308): 835–840
https://doi.org/10.1038/nature09267
pmid: 20703300
|
13 |
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res2011; 39(Database): D152–D157
https://doi.org/10.1093/nar/gkq1027
pmid: 21037258
|
14 |
Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell2005; 120(1): 21–24
https://doi.org/10.1016/j.cell.2004.12.031
pmid: 15652478
|
15 |
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell2005; 120(1): 15–20
https://doi.org/10.1016/j.cell.2004.12.035
pmid: 15652477
|
16 |
Hata A. Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol2013; 75(1): 69–93
https://doi.org/10.1146/annurev-physiol-030212-183737
pmid: 23157557
|
17 |
Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest2013; 123(1): 11–18
https://doi.org/10.1172/JCI62876
pmid: 23281405
|
18 |
Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation2008; 117(4): e25–e146
https://doi.org/10.1161/CIRCULATIONAHA.107.187998
pmid: 18086926
|
19 |
Charakida M, Tousoulis D, Stefanadis C. Early atherosclerosis in childhood: diagnostic approaches and therapeutic strategies. Int J Cardiol2006; 109(2): 152–159
https://doi.org/10.1016/j.ijcard.2005.06.010
pmid: 16023230
|
20 |
Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases. FEBS J2011; 278(10): 1619–1633
https://doi.org/10.1111/j.1742-4658.2011.08090.x
pmid: 21395978
|
21 |
Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation2010; 121(8): 1022–1032
https://doi.org/10.1161/CIRCULATIONAHA.109.889048
pmid: 20194875
|
22 |
van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov2012; 11(11): 860–872
https://doi.org/10.1038/nrd3864
pmid: 23080337
|
23 |
van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res2008; 103(9): 919–928
https://doi.org/10.1161/CIRCRESAHA.108.183426
pmid: 18948630
|
24 |
Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res2012; 110(3): 483–495
https://doi.org/10.1161/CIRCRESAHA.111.247452
pmid: 22302755
|
25 |
Fichtlscherer S, Zeiher AM, Dimmeler S, Sessa WC. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol2011; 31(11): 2383–2390
https://doi.org/10.1161/ATVBAHA.111.226696
pmid: 22011751
|
26 |
Li WY, Jin J, Chen J, Guo Y, Tang J, Tan S. Circulating microRNAs as potential non-invasive biomarkers for the early detection of hypertension-related stroke. J Hum Hypertens2014; 28(5): 288–291
https://doi.org/10.1038/jhh.2013.94
pmid: 24132136
|
27 |
Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M, Musacchio E, Barbieri M, Mauro C, Mosca N, Solimene F, Mottola MT, Russo A, Rossi F, Paolisso G, D’Amico M. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail2013; 15(11): 1277–1288
https://doi.org/10.1093/eurjhf/hft088
pmid: 23736534
|
28 |
Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol2008; 141(5): 672–675
https://doi.org/10.1111/j.1365-2141.2008.07077.x
pmid: 18318758
|
29 |
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA2008; 105(30): 10513–10518
https://doi.org/10.1073/pnas.0804549105
pmid: 18663219
|
30 |
Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem2002; 48(10): 1647–1653
pmid: 12324479
|
31 |
El-Hefnawy T, Raja S, Kelly L, Bigbee WL, Kirkwood JM, Luketich JD, Godfrey TE. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem2004; 50(3): 564–573
https://doi.org/10.1373/clinchem.2003.028506
pmid: 14718398
|
32 |
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res2008; 18(10): 997–1006
https://doi.org/10.1038/cr.2008.282
pmid: 18766170
|
33 |
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem2010; 285(23): 17442–17452
https://doi.org/10.1074/jbc.M110.107821
pmid: 20353945
|
34 |
Valadi H, Ekstr?m K, Bossios A, Sj?strand M, Lee JJ, L?tvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol2007; 9(6): 654–659
https://doi.org/10.1038/ncb1596
pmid: 17486113
|
35 |
Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia2006; 20(5): 847–856
https://doi.org/10.1038/sj.leu.2404132
pmid: 16453000
|
36 |
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol2002; 2(8): 569–579
pmid: 12154376
|
37 |
Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int2010; 78(9): 838–848
https://doi.org/10.1038/ki.2010.278
pmid: 20703216
|
38 |
Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE2010; 5(10): e13515
https://doi.org/10.1371/journal.pone.0013515
pmid: 20976003
|
39 |
Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem2013; 288: 10849–10859
https://doi.org/10.1074/jbc.M112.446831
pmid: 23439645
|
40 |
Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol2012; 14(3): 249–256
https://doi.org/10.1038/ncb2441
pmid: 22327366
|
41 |
Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol2003; 19(1): 397–422
https://doi.org/10.1146/annurev.cellbio.19.111301.153609
pmid: 14570575
|
42 |
Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Z?ller M. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res2010; 70(4): 1668–1678
https://doi.org/10.1158/0008-5472.CAN-09-2470
pmid: 20124479
|
43 |
Rana S, Yue S, Stadel D, Z?ller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol2012; 44(9): 1574–1584
https://doi.org/10.1016/j.biocel.2012.06.018
pmid: 22728313
|
44 |
van den Boorn JG, Dassler J, Coch C, Schlee M, Hartmann G. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev2013; 65(3): 331–335
https://doi.org/10.1016/j.addr.2012.06.011
pmid: 22750807
|
45 |
Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia2006; 20(9): 1487–1495
https://doi.org/10.1038/sj.leu.2404296
pmid: 16791265
|
46 |
Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schl?ndorff D. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med2000; 6(7): 769–775
https://doi.org/10.1038/77498
pmid: 10888925
|
47 |
Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci2010; 123(10): 1603–1611
https://doi.org/10.1242/jcs.064386
pmid: 20445011
|
48 |
Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood2009; 114(3): 723–732
https://doi.org/10.1182/blood-2009-02-205930
pmid: 19369228
|
49 |
Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Müller-Newen G, Soehnlein O, Weber C. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation2010; 122(5): 495–506
https://doi.org/10.1161/CIRCULATIONAHA.109.909473
pmid: 20644015
|
50 |
Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res2012; 93(4): 555–562
https://doi.org/10.1093/cvr/cvr266
pmid: 22028337
|
51 |
K?ppler B, Cohen C, Schl?ndorff D, Mack M. Differential mechanisms of microparticle transfer toB cells and monocytes: anti-inflammatory propertiesof microparticles. Eur J Immunol2006; 36(3): 648–660
https://doi.org/10.1002/eji.200535435
pmid: 16479543
|
52 |
Pula G, Perera S, Prokopi M, Sidibe A, Boulanger CM, Mayr M. Proteomic analysis of secretory proteins and vesicles in vascular research. Proteomics Clin Appl2008; 2(6): 882–891
https://doi.org/10.1002/prca.200800040
pmid: 21136886
|
53 |
Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell2010; 39(1): 133–144
https://doi.org/10.1016/j.molcel.2010.06.010
pmid: 20603081
|
54 |
Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE2010; 5(7): e11803
https://doi.org/10.1371/journal.pone.0011803
pmid: 20668554
|
55 |
Leroyer AS, Ebrahimian TG, Cochain C, Récalde A, Blanc-Brude O, Mees B, Vilar J, Tedgui A, Levy BI, Chimini G, Boulanger CM, Silvestre JS. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation2009; 119(21): 2808–2817
https://doi.org/10.1161/CIRCULATIONAHA.108.816710
pmid: 19451354
|
56 |
VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res2003; 59(2): 277–287
https://doi.org/10.1016/S0008-6363(03)00367-5
pmid: 12909311
|
57 |
Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB, Peter K. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res2012; 93(4): 633–644
https://doi.org/10.1093/cvr/cvs007
pmid: 22258631
|
58 |
Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res2010; 107(9): 1047–1057
https://doi.org/10.1161/CIRCRESAHA.110.226456
pmid: 21030722
|
59 |
Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol2002; 22(1): 101–107
https://doi.org/10.1161/hq0102.101525
pmid: 11788468
|
60 |
Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol2010; 6(1): 21–29
https://doi.org/10.1038/nrrheum.2009.229
pmid: 19949432
|
61 |
Holmgren L, Bergsmedh A, Spetz AL. Horizontal transfer of DNA by the uptake of apoptotic bodies. Vox Sang2002; 83(Suppl 1): 305–306
https://doi.org/10.1111/j.1423-0410.2002.tb05323.x
pmid: 12617158
|
62 |
Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, K?ppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal2009; 2(100): ra81
https://doi.org/10.1126/scisignal.2000610
pmid: 19996457
|
63 |
Janas T, Janas T, Yarus M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res2006; 34(7): 2128–2136
https://doi.org/10.1093/nar/gkl220
pmid: 16641318
|
64 |
Kim SI, Shin D, Choi TH, Lee JC, Cheon GJ, Kim KY, Park M, Kim M. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther2007; 15(6): 1145–1152
pmid: 17440441
|
65 |
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol2011; 13(4): 423–433
https://doi.org/10.1038/ncb2210
pmid: 21423178
|
66 |
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA2011; 108(12): 5003–5008
https://doi.org/10.1073/pnas.1019055108
pmid: 21383194
|
67 |
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res2011; 39(16): 7223–7233
https://doi.org/10.1093/nar/gkr254
pmid: 21609964
|
68 |
Turchinovich A, Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol2012; 9(8): 1066–1075
https://doi.org/10.4161/rna.21083
pmid: 22858679
|
69 |
Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res2010; 38(20): 7248–7259
https://doi.org/10.1093/nar/gkq601
pmid: 20615901
|
70 |
D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J2010; 31(22): 2765–2773
https://doi.org/10.1093/eurheartj/ehq167
pmid: 20534597
|
71 |
Oerlemans MI, Mosterd A, Dekker MS, de Vrey EA, van Mil A, Pasterkamp G, Doevendans PA, Hoes AW, Sluijter JP. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med2012; 4(11): 1176–1185
https://doi.org/10.1002/emmm.201201749
pmid: 23023917
|
72 |
Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J2010; 31(6): 659–666
https://doi.org/10.1093/eurheartj/ehq013
pmid: 20159880
|
73 |
Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem2010; 56(7): 1183–1185
https://doi.org/10.1373/clinchem.2010.144121
pmid: 20395621
|
74 |
Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM. MiR423-5p as a circulating biomarker for heart failure. Circ Res2010; 106(6): 1035–1039
https://doi.org/10.1161/CIRCRESAHA.110.218297
pmid: 20185794
|
75 |
Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, R?xe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S. Circulating microRNAs in patients with coronary artery disease. Circ Res2010; 107(5): 677–684
https://doi.org/10.1161/CIRCRESAHA.109.215566
pmid: 20595655
|
76 |
Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X, Wang B, Li Y, Xiao C, Zhang M, Wang S, Yu L, Chen AF, Yang X, Cai J. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation2011; 124(2): 175–184
https://doi.org/10.1161/CIRCULATIONAHA.110.012237
pmid: 21690488
|
77 |
Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet2010; 3(6): 499–506
https://doi.org/10.1161/CIRCGENETICS.110.957415
pmid: 20921333
|
78 |
White HD, Chew DP. Acute myocardial infarction. Lancet2008; 372(9638): 570–584
https://doi.org/10.1016/S0140-6736(08)61237-4
pmid: 18707987
|
79 |
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science2007; 316(5824): 575–579
https://doi.org/10.1126/science.1139089
pmid: 17379774
|
80 |
Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem2009; 55(11): 1944–1949
https://doi.org/10.1373/clinchem.2009.125310
pmid: 19696117
|
81 |
Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S, Zhang C. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond)2010; 119(2): 87–95
https://doi.org/10.1042/CS20090645
pmid: 20218970
|
82 |
Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun2010; 391(1): 73–77
https://doi.org/10.1016/j.bbrc.2009.11.005
pmid: 19896465
|
83 |
De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM. Transcoronary concentration gradients of circulating microRNAs. Circulation2011; 124(18): 1936–1944
https://doi.org/10.1161/CIRCULATIONAHA.111.037572
pmid: 21969012
|
84 |
Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet2011; 4(4): 446–454
https://doi.org/10.1161/CIRCGENETICS.110.958975
pmid: 21642241
|
85 |
Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med2013; 11: 222
pmid: 24053180
|
86 |
Bo?tjan?i? E, Zidar N, ?tajer D, Glava? D. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology2010; 115(3): 163–169
https://doi.org/10.1159/000268088
pmid: 20029200
|
87 |
van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell2009; 17(5): 662–673
https://doi.org/10.1016/j.devcel.2009.10.013
pmid: 19922871
|
88 |
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet2006; 38(2): 228–233
https://doi.org/10.1038/ng1725
pmid: 16380711
|
89 |
Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang DW. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci2012; 8(6): 811–818
https://doi.org/10.7150/ijbs.4439
pmid: 22719221
|
90 |
Long G, Wang F, Duan Q, Yang S, Chen F, Gong W, Yang X, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS ONE2012; 7(12): e50926
https://doi.org/10.1371/journal.pone.0050926
pmid: 23236408
|
91 |
Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS ONE2014; 9(9): e105734
https://doi.org/10.1371/journal.pone.0105734
pmid: 25184815
|
92 |
Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, Mayr A, Weger S, Schett G, Shah A, Boulanger CM, Willeit J, Chowienczyk PJ, Kiechl S, Mayr M. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol2012; 60(4): 290–299
https://doi.org/10.1016/j.jacc.2012.03.056
pmid: 22813605
|
93 |
Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J2011; 75(2): 336–340
https://doi.org/10.1253/circj.CJ-10-0457
pmid: 21157109
|
94 |
Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res2010; 107(6): 810–817
https://doi.org/10.1161/CIRCRESAHA.110.226357
pmid: 20651284
|
95 |
Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel TJ, Biessen EA. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun2010; 394(3): 792–797
https://doi.org/10.1016/j.bbrc.2010.03.075
pmid: 20230787
|
96 |
Yang LX, Liu G, Zhu GF, Liu H, Guo RW, Qi F, Zou JH. MicroRNA-155 inhibits angiotensin II-induced vascular smooth muscle cell proliferation. J Renin Angiotensin Aldosterone Syst2014; 15: 109–116
pmid: 24737641
|
97 |
Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, Fabricio AS, Squarcina E, Gion M, Palatini P, Semplicini A. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens2011; 24(2): 241–246
https://doi.org/10.1038/ajh.2010.211
pmid: 20966899
|
98 |
Gan CS, Wang CW, Tan KS. Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res2012; 11(1): 147–152
https://doi.org/10.4238/2012.January.27.1
pmid: 22370881
|
99 |
Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol2013; 13(1): 178
https://doi.org/10.1186/1471-2377-13-178
pmid: 24237608
|
100 |
Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol2008; 10(12): 1470–1476
https://doi.org/10.1038/ncb1800
pmid: 19011622
|
101 |
Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert V, Thiry M, Sliwa K, Noel A, Martial JA, Hilfiker-Kleiner D, Struman I. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest2013; 123(5): 2143–2154
https://doi.org/10.1172/JCI64365
pmid: 23619365
|
102 |
Yang Y, Rodriguez JE, Kitsis RN. A microRNA links prolactin to peripartum cardiomyopathy. J Clin Invest2013; 123(5): 1925–1927
https://doi.org/10.1172/JCI69286
pmid: 23619357
|
103 |
Wang X, Huang W, Liu G, Cai W, Millard RW, Wang Y, Chang J, Peng T, Fan GC. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol2014; 74: 139–150
https://doi.org/10.1016/j.yjmcc.2014.05.001
pmid: 24825548
|
104 |
Iguchi H, Kosaka N, Ochiya T. Secretory microRNAs as a versatile communication tool. Commun Integr Biol2010; 3(5): 478–481
https://doi.org/10.4161/cib.3.5.12693
pmid: 21057646
|
105 |
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Würdinger T, Middeldorp JM. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA2010; 107(14): 6328–6333
https://doi.org/10.1073/pnas.0914843107
pmid: 20304794
|
106 |
Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood2012; 119(3): 756–766
https://doi.org/10.1182/blood-2011-02-338004
pmid: 22031862
|
107 |
McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem2011; 57(6): 833–840
https://doi.org/10.1373/clinchem.2010.157198
pmid: 21487102
|
108 |
van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA2006; 103(48): 18255–18260
https://doi.org/10.1073/pnas.0608791103
pmid: 17108080
|
109 |
Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation2007; 116(3): 258–267
https://doi.org/10.1161/CIRCULATIONAHA.107.687947
pmid: 17606841
|
110 |
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature2008; 456(7224): 980–984
https://doi.org/10.1038/nature07511
pmid: 19043405
|
111 |
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA2008; 105(35): 13027–13032
https://doi.org/10.1073/pnas.0805038105
pmid: 18723672
|
112 |
Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell2008; 15(2): 261–271
https://doi.org/10.1016/j.devcel.2008.07.002
pmid: 18694565
|
113 |
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med2013; 368(18): 1685–1694
https://doi.org/10.1056/NEJMoa1209026
pmid: 23534542
|
114 |
Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation2011; 124(14): 1537–1547
https://doi.org/10.1161/CIRCULATIONAHA.111.030932
pmid: 21900086
|
115 |
Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell2012; 149(3): 671–683
https://doi.org/10.1016/j.cell.2012.03.029
pmid: 22541436
|
116 |
Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res2012; 110(1): 71–81
https://doi.org/10.1161/CIRCRESAHA.111.244442
pmid: 22052914
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|